
Adaptive policies for balancing performance and
lifetime of mixed SSD arrays through workload

sampling
Sangwhan Moon

Department of Electrical and
Computer Engineering
Texas A&M University
College Station, Texas

Email: sangwhan@tamu.edu

A. L. Narasimha Reddy
Department of Electrical and

Computer Engineering
Texas A&M University
College Station, Texas

Email: reddy@tamu.edu

Abstract—Solid-state drives (SSDs) have become promising
storage components to serve large I/O demands in modern
storage systems. Enterprise class (high-end) SSDs are faster and
more resilient than client class (low-end) SSDs but they are
expensive to be deployed in large scale storage systems. It is
an attractive and practical alternative to exploit the high-end
SSDs as a cache and low-end SSDs as main storage.

This paper explores how to optimize a mixed SSD array in
terms of performance and lifetime. This paper shows that simple
integration of different classes of SSDs in traditional caching
policies results in poor reliability. This paper also reveals that
caching policies with static workload distribution are not always
efficient.

In this paper, we propose a sampling based adaptive approach
that achieves fair workload distribution across the cache and the
storage. The proposed algorithm enables fine-grained control of
the workload distribution which minimizes latency over lifetime
of mixed SSD arrays. We show that our adaptive algorithm is
very effective in improving the latency over lifetime metric, on
an average, by up to 2.36 times over LRU, across a number of
workloads.

I. INTRODUCTION

Solid-state drive (SSD) arrays are expected to accelerate
a large volume of transactions in modern storage systems.
Although they have shown their effectiveness in performance,
concerns remain about their high cost per gigabyte and limited
write endurance.

There are different classes of SSDs for different applica-
tions. Enterprise class (high-end) fast SSDs use I/O interfaces
such as PCI express (PCIe). The high-end SSDs usually consist
of single-level cell (SLC) flash memory whose write endurance
is of the order of 100K write cycles which is large enough to
endure enterprise workloads for a few years. However, the
high-end SSDs are expensive per gigabyte to be deployed in
large scale storage systems. On the other hand, a client class
(low-end) SSD uses traditional serial ATA (SATA) interface
and may employ multi-level cell (MLC) flash memory which is
cheaper per gigabyte than SLC. However, the write endurance

0.1

1

10

100

0.1 1 10 100

Co
st
($
/G

B)

Device Writes Per Day (DWPD, higher is be:er)

High-end SSDs
Low-end SSDs

Fig. 1. Different classes of SSDs: cost per gigabyte (lower is better) vs.
device writes per day (higher is better)

of MLC is an order of magnitude less than SLC, in 10K-30K
1.

Figure 1 shows the different classes of commercial SSDs
with their cost and reliability. Each point shows cost per
gigabyte and device writes per day (DWPD) of recent SSDs
from various vendors. The DWPD is a widely used industrial
metric for the reliability of an SSD. It means that the lifetime
of the SSD is only guaranteed when the entire device is written
less than DWPD times per day. The figure shows high-end
SSDs provide higher reliability while low-end SSDs provide
cost-efficiency.

Several vendors are offering SSD arrays combining these
devices in a storage hierarchy. These systems employ SLC
flash as a cache and MLC flash as backend storage [3]. These
systems try to improve performance at a lower cost per byte.
Not much work has been done in understanding the data
lifetimes in such arrays. While the high-end SLC flash can
improve lifetimes due to higher write endurance, they tend to
absorb majority of the workload when employed as a cache.
In an SSD array, the performance improves as cache hit rates
go up and more and more requests are satisfied at the speed

1Recent triple-level cell (TLC) is cheaper than MLC, but it has only 3K
write endurance which is two orders of magnitudes smaller than SLC [1].
Phase change memory (PCM) has 108-1010 write endurance which is two
orders of magnitude larger than SLC [2].

of SLC flash. However, as a higher fraction of workload is
absorbed in the cache, the SLC cells may wear out faster due to
higher rate of writes than the MLC cells in the backend storage
which absorbs only a small fraction of the write workload
at higher hit rates. As a result, the lifetimes of data in an
SSD array which equals the minimum of the data lifetimes
in both the cache and the backend may be reduced as the
cache absorbs a higher workload and wears out in time faster
than the backend storage. Hence, it is important to balance the
workload in such an SSD array considering both performance
and data lifetimes.

The imbalance in lifetime between cache and main storage
motivates the investigation of new approach that considers
both performance (latency) and lifetime of different classes
of SSDs.

Several studies have looked at the problem of distributing
load across SSDs and HDDs based on hotness of data [4], size
of the request [5], [6] and equalization of response times [7].
These approaches are focused on maximizing performance.
Our approach here considers both performance and lifetimes
in distributing loads across different types of SSDs.

We do not consider the issues of configurations in this paper.
Several issues including performance, cost and other factors
determine a configuration that may be employed. We consider
the problem of balancing the performance and lifetime given
a configuration. This problem is important since a machine
may be employed to serve multiple workloads and since
workloads evolve over time, making it necessary to balance
the lifetime and performance over time irrespective of the
decisions involved at the time of configuration.

The major contributions of this paper are:

• We find that high-end SSD cache can wear out faster than
low-end SSDs main storage and this could result in lower
lifetimes of mixed SSD arrays.

• We introduce a new metric, a latency over lifetime, to
control the trade-off between the performance (latency)
and lifetime. The metric is minimized when latency is
smaller and lifetime is larger.

• We propose a sampling based approach to appropriately
distribute workload across cache and backend storage
for trading off performance and lifetime in mixed SSD
arrays. We show that the proposed approach improves
latency over lifetime in such arrays by up to 2.36 times.

The rest of the paper is organized as follows. Section II
states the problem this paper targets to solve. Section III
discusses existing caching policies. Section IV analyzes work-
load distribution of those different caching policies. Section
V shows our sampling based approach for adaptive workload
distribution. Section VI evaluates different caching policies
with our adaptive workload distribution algorithm. Section VII
introduces related work on cache and SSD storage systems and
Section VIII concludes the paper.

II. PROBLEM STATEMENT

Storage systems could be designed to provide average
latencies below a target performance metric2. We call this
latency as target latency in this paper. When the estimated
latency exceeds the target latency, caching policy would be
required to load more data in the cache. When the cache is
utilized on every request and the latency targets are not being
met, the only alternative would be to increase the size of the
cache. We assume, for this paper, we have to operate with a
given cache size.

Both latency and lifetime are optimized such that a latency
over lifetime is minimized. The goal of this paper can be
restated as an optimization problem to minimize the latency
over lifetime subject to a latency constraint in Equation (1).

minimize L / T

subject to
L ≤ Lmax

(1)

where L is the expected latency, Lmax is the target latency
constraint, and T is the expected lifetime.

III. BACKGROUND: SELECTIVE CACHING POLICIES

Traditional caching policies typically employ a static work-
load classifiers (thresholds). For example, Bcache [5] caches
only requests below a certain static threshold. However, this
could result in less efficient workload distribution, especially,
when workload characteristics are skewed and/or changing
over time.

In addition to traditional LRU caching policy, different
caching policies can be applied in mixed SSD arrays for dif-
ferent characteristics of enterprise workloads. Caching policies
based on request size and hotness of workload are introduced
in this section. Additionally, a probability based caching policy
is proposed to precisely control workloads across SSD arrays.

A. Request size based caching policy

Recent solutions [5], [6] propose to selectively cache re-
quests whose size is less than a threshold. This policy has
been advocated considering competitive sequential read/write
performance of low-end storage device arrays. Although the
target of the solution is an SSD cache for hard disk main
storage, this is possibly effective in SSD arrays with an SSD
cache because 1) large sequential I/O requests push out valid
data in cache, and 2) sequential I/O performance of main
storage is usually better than random read/write performance.
However, the threshold for classifying sequential/random I/O
should be determined carefully. Since the optimal size (thresh-
old) depends on the characteristics of workload which changes
over time. The work in [5] uses a static threshold (4 MB)
and caches I/O requests whose sizes are less than the 4MB
threshold.

2There have been many cache performance metrics such as cache hit rate,
latency, and throughput. We use latency in this paper.

B. Hotness based caching policy

Hotness of data has been used to determine which data
should be cached and which data should be directly written
to storage. Many hotness based caching policies have been
proposed. Among a variety of hotness based caching policies
we choose 2Q replacement policy [4], as a representative. As
its name indicates, 2Q employs two LRU queues of block
references. Data returned on a cache miss is initially stored
in the second level queue and the block reference is only
promoted to the first level queue when it is referenced more
than threshold (originally, this threshold is 1) while in the
second level queue. Alternatively, we can track reference
counts and promote block references whose reference count is
in the top 10% of tracking history. In this policy, only blocks
in the first level queue are actually cached. The size of the
second level queue is configurable and it is equal to the size
of actual cache in this paper.

C. Probability based caching policy

Traditional caching policies are not optimized to precisely
control the workload distribution across the cache and storage
components of the system. For example, under the workload
mostly consisting of one size (4KB) requests, size based
caching policy is not able to distribute the workload. Con-
sequently, a new caching policy is introduced where requests
are probabilistically cached. Unlike other policies mentioned
above, the purpose of the probability based caching policy
is to remove dependencies between workload distribution and
workload characteristics.

The probabilistic caching policy is not optimal in terms
of cache hit rate since it does not guarantee that cached
data is more likely to be referenced in the near future than
the bypassed data. Nevertheless, the caching policy is still
effective since loss in performance is generally marginal
because the bypassed hot data could be loaded on the next
cache miss.

IV. ANALYSIS OF WORKLOAD DISTRIBUTION

In this section, we analyze workload distribution with
different caching policies discussed in the previous section.

Table I shows the list of symbols frequently used in this
paper. For example, r and w are the read and write request
rates, and mr and mw are read and write cache miss rates,
respectively.

A. LRU Caching Policy

Figure 2 shows the architecture and workload distribution
of a mixed SSD array. In the figure, least recently used (LRU)
caching policy, one of the most popular caching policies, is
employed. Other caching policies are discussed in Section III.

In Figure 2, read misses mr · r in the cache become read
requests at the storage (arrow 3). These requests will result in
writes (arrow 4) at the cache. Read misses and write misses
require space allocation in the cache. Clean data in the cache
can be discarded while dirty data should be flushed to the

TABLE I
LIST OF SYMBOLS

Symbols Description
lc, ls Write endurance of flash (Cache, Storage)
cc, cs Capacity of an SSD (Cache, Storage)
cw Unique data size of workload

Nc, Ns The number of SSDs (Cache, Storage)
r Read workload intensity
w Write workload intensity
mr Read cache miss rate
mw Write cache miss rate

wc, ws Actual writes in cache (wc) and storage (ws)
fc, fs Wear out rate per flash cell (Cache, Storage)

d The portion of dirty data (Cache)
tc,r , tc,w Read (tc,r) and write (tc,w) latency (Cache)
ts,r , ts,w Read (ts,r) and write (ts,w) latency (Storage)

High-‐end SSDs

Low-‐end SSDs

3.mrr

1.r 2.w

5. mrr +mww()d4.mrr
read miss dirty entry eviction

read write

Fig. 2. A mixed SSD array with LRU caching policy (red line: writes in
cache, blue line: writes in main storage)

storage at rate d · (mr · r+mw ·w) on an average where d is
the dirty ratio in the cache.

When workloads have weak locality in reads, cache can
wear out substantially with marginal benefits in performance.
In this case, selective caching of read cache misses can
save write endurance of cache with acceptable degradation in
performance. However, bypassing read cache misses for hot
data can result in severe degradation in performance. Write
workload is entirely absorbed in cache first (arrow 2), and only
a portion of writes is flushed to main storage (arrow 5). Write
intensive workloads with strong locality therefore can wear out
the cache faster than main storage. Appropriate distribution of
writes between the cache and the storage improves the lifetime
of the cache, but it can degrade the performance of the storage
system. This paper studies this tradeoff between performance
and lifetime in an SSD array where the cache and backend
storage employ different types of flash devices.

With LRU caching policy, flushing of dirty data results in
writes at main storage as indicated by the arrow 5 in Figure
2. The writes served in storage per flash memory cell ws is

ws =
(mr · r +mw · w) · d

Ns · cs
(2)

where Ns is the number of SSDs in main storage and cs is
the capacity of the SSDs.

In this paper, we assume perfect wear leveling in both cache
and main storage. According to Figure 2, the writes served in
cache per flash memory cell, wc, is the sum of the read misses
(arrow 4) and the write workload (arrow 2) per flash memory
cell.

wc =
mr · r + w

Nc · cc
(3)

where Nc is the number of SSDs in cache and cc is the
capacity of the SSDs.

And cache and storage wear out at the rate of fc and fs,
respectively.

fc =
wc

lc
=
mr · r + w

Nc · cc · lc

fs =
ws

ls
=

(mr · r +mw · w) · d
Ns · cs · ls

(4)

With SLC caches, data may reside in the cache for consider-
ably long time before it is migrated to storage and hence the
minimum of cache and storage lifetimes determine the data
lifetime. Thus, the achievable lifetime of a mixed SSD array
T can be restated as

T =
1

max(fc, fs)
(5)

Under the assumptions of equal write amplification in the
cache and the storage, we can use these equations to estimate
the lifetime of mixed SSD arrays.

The relationship between performance and lifetime is com-
plex and non-linear. This implies that the performance benefits
from cache potentially result in significant loss in lifetime of
the mixed SSD arrays in practical configurations. Thus, the
trade-offs between performance and lifetime of the storage
systems should be tuned carefully.

B. Selective Caching Policies

In Section III, many selective caching policies are discussed.
Figure 3 shows how probabilistic caching policy is different
from LRU in terms of workload distribution. Similar analysis
can be carried out for other policies that may be different
from the ones studies in this paper. In Figure 3, only a
portion p of read cache miss is recorded in cache for future
accesses (arrow 3). The higher the p is, the more we write
in the cache on a read miss. The caching factor p can be
different for each caching policy. It is determined by the size,
hotness and probability in the the size-based, hotness-based
and probabilistic policies respectively. In addition, a portion
1−p of write cache misses go directly to main storage (arrow
5) which does not exist in LRU policy in Figure 3. As we
increase the portion p, frontend cache serves a higher fraction
of workload and wears out faster. The performance can also
be tuned by changing the same probability parameter p, thus
enabling an effective control mechanism to optimize for both
metrics of performance and lifetime.

C. Write amplification

The above analysis assumed that write amplification is the
same both in the cache and the storage. When this is not the
case, the lifetimes can be modified to appropriately account
for them in Equation (2) and (3), based on observed statistics.

Frontend Cache

Backend Storage
2.mrr

1.hrr

6. mrr +mww() pd5.mw (1− p)w 3.mr pr

4.(1−mw (1− p))w
read write

read miss bypassed
write miss dirty entry evic ion

bypassed
read miss

7.mr (1− p)r

Fig. 3. Workload distribution of a mixed SSD array with selective caching
policy (red: write, black: read)

TABLE II
PRACTICAL CONFIGURATION OF SSDS AND WORKLOAD

Item Description Specification

High-end
(SLC) SSD

Capacity 100 GB
Write endurance 100 K
Read/write latency 0.04ms/0.2ms

Low-end
(MLC) SSD

Capacity 200 GB
Write endurance 10 K
R/W latency 0.2ms/1.0ms

Workload I

Read / write (MB/s) 160 / 200
R/W cache hit rate 90%/85%
R/W length 16KB/16KB
Dirty data in cache 65%

Workload II

Read / write (MB/s) 100 / 250
R/W cache hit rate 50%/15%
R/W length 4KB/64KB
Dirty data in cache 81%

w′s = βs ·
(mr · r +mw · w) · d

Ns · cs
w′c = βc ·

mr · r + w

Nc · cc

(6)

where βs and βc are observed write amplification in the
cache and the storage, respectively.

The write amplifications within the cache and the storage are
determined by various factors. The amount of overprovision-
ing, the differences in the workloads seen at cache and storage
and the management policies, among others, play a role in
determining the write amplification. In a practical system, the
write amplification can be measured and used appropriately as
shown in Eq. (6).

D. Case Study

Table II shows practical parameters of different classes
of SSDs and enterprise workloads. Those parameters are
extracted from commercial SSD datasheet and block level I/O
traces for enterprise workload.

When we employ one high-end SSD as a cache for 3 low-
end SSDs for Workload I in Table II, for example, the high-end
SSD cache absorbs all write workload as well as 10% of read
workload (read cache miss) in writes. The amount of writes
per flash memory cell in the high-end SSD is wc and the SLC
wears out at the rate fc:

wc =
160MB/s · 0.1 + 200MB/s

1 · 100GB
= 2.16e-3 writes / cell / sec

fc =
6.75e-3
100K

= 2.16e-8 / cell / sec

(7)

This implies that the workload consumes 2.16e-8 of SLC’s
write endurance per second, or SLC’s write endurance would
be consumed in 1.47 years.

Cache miss initiates cache data eviction. While clean data
is simply removed in cache, dirty data should be written back
to main storage. The rate of writeback ws, and resulting wear
out rate of MLC fs can be estimated in Equation (8).

ws =
(160MB/s · 0.1 + 0.15 · 200MB/s) · 0.65

600GB
= 4.98e-5 writes / cell / sec

fs =
4.98e-5
10K

= 4.98e-9 / per / sec

(8)

In other words, the MLC will use up its write endurance in
6.37 years.

This simple example shows that high-end SSDs cache can
wear out faster and lose data before low-end SSDs wear out,
and the lifetime of the mixed SSD array is bounded to the
shorter lifetime, 1.47 years in this case.

The average latency can be computed for each configuration.
In this example, the average latency is 0.136 ms.

When the same configuration goes through Workload II
in Table II, however, we can see the different workload
distribution. Cache wears out at the rate fc in Equation (9).

wc =
100MB/s · 0.5 + 250MB/s

1 · 100GB
= 3.00e-3 writes / cell / sec

fc =
3.00e-3
100K

= 3.00e-8 / cell / sec

(9)

Meanwhile, storage wears out at the following rate fs:

ws =
(0.50 · 100MB/s+ 0.85 · 250MB/s) · 0.81

600GB
= 3.54e-4 writes / cell / sec

fs =
3.54e-4
10K

= 3.54e-8 / per / sec

(10)

The results in Equation (9) and (10) show that the lifetime
of SLC is expected to be 1.06 years, while MLC’s lifetime is
0.90 years. The lifetime of the mixed SSD array is bounded to
the lifetime of MLC (the lower), 0.90 years, in this example.

The latency of the mixed SSD array is 0.173 ms on an
average.

V. ADAPTIVE WORKLOAD DISTRIBUTION

Static workload classifiers have been used in many caching
policies. For example, we can selectively cache requests whose
size is less than or equal to 64 KB, and send requests
larger than 64 KB directly to main storage. We can configure
hotness based caching policy to promote block references
(from second level queue to first level queue) whose reference
is hotter than top 10% of reference count tracking history.

In this section, we show that those static workload classifiers
can be less efficient. Based on the analysis, we propose
a sampling based approach which makes existing selective
caching policies adaptive to the characteristics of workloads.

256 KB 128 KB 64KB 32KB 16KB 8KB 4KB
Workload Classifier (Threshold)

10-1

100

101

N
o
rm

a
liz

e
d
 L

a
te

n
cy

,
Li

fe
ti

m
e
,
a
n
d
 M

e
tr

ic

latency

lifetime

metric

(a) Hardware monitoring server

256 KB 128 KB 64KB 32KB 16KB 8KB 4KB
Workload Classifier (Threshold)

10-2

10-1

100

101

102

N
o
rm

a
liz

e
d
 L

a
te

n
cy

,
Li

fe
ti

m
e
,
a
n
d
 M

e
tr

ic

latency

lifetime

metric

(b) Web server

Fig. 4. Static threshold based analysis of size based caching policy.

A. Static workload distribution

We explore the effectiveness of different static workload
classifiers for different enterprise workloads. We use our own
trace-driven simulator with enterprise workload traces from
[8]. Details of the simulator are discussed later in Section
VI-A. Figure 4 shows latency, lifetime, and latency over life-
time of a size based caching policy with different thresholds.
These two traces are used to show the possible impact of
static thresholds on different workloads. Performance of all the
traces are shown later in the paper. In the figure, we normalize
the results of different thresholds to that of 256 KB.

In Figure 5, we can clearly see that there is no ideal
threshold which can be applied across both the workloads.
Each workload has different optimal threshold in terms of
latency over lifetime. Figure 4a shows that 64KB is the optimal
threshold for hardware monitoring server trace. Meanwhile,
the optimal threshold of web server application in Figure 4b
is 4 KB.

We also track latency, lifetime, and latency over lifetime
of probabilistic caching policy with different static thresholds
in Figure 5. In the figure, static threshold is the probability
of caching and it is applied from the beginning to the end of
traces. The result shows the average latency over lifetime for a
week, and the result is normalized to the result of threshold of
0.99. The results in Figure 5a show that lifetime increases as
the threshold is decreased from 0.99 to 0.3 and the workload is
distributed away from faster wearing high-end SSDs. However,
as more wokload is moved to back-end SSDs, the back-end
SSDs start to wear out faster and decrease lifetime below the

0.99 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.01
Threshold

10-1

100

101

No
rm

al
iz

ed
 L

at
en

cy
, L

ife
tim

e,
 a

nd
 M

et
ric

latency
lifetime
metric

(a) Hardware monitoring server

0.99 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.01
Threshold

10-2

10-1

100

101

102

No
rm

al
iz

ed
 L

at
en

cy
, L

ife
tim

e,
 a

nd
 M

et
ric

latency
lifetime
metric

(b) Web server

Fig. 5. Static threshold based analysis of probabilistic caching policy

threshold of 0.3. The optimal workload distribution is reached
at a threshold of 0.3 when the wearing rates at both tiers are
matched. In Figure 5b, however, it is better to send most of
the workload directly to main storage. As mentioned before,
the main purpose of the probability based caching policy is
to precisely control workload distribution. The results in the
figure shows that it can control the workload distribution fairly
well.

The results in Figure 4 and 5 show that the latency increases
as a smaller fraction of workload is served in the cache. How-
ever, the latency over lifetime does not always monotonically
increase as the threshold is increased as shown in Figure 5a.

B. Sampling based adaptive approach

Figure 4 and 5 show that the latency over lifetime does not
monotonically change and the control function may change
from workload to workload. In order to adapt to each workload
and to different phases of the workload, we propose a sampling
based approach to adapt automatically to different characteris-
tics of workloads. Our approach is to sample the workload and
run them in separate sample caches with different workload
classifiers (thresholds) to find the optimal threshold. This
enables the estimation of the latency over lifetime vs. threshold
curve. Based on the estimation, we can choose the optimal
threshold. The optimal threshold can be adaptive to the change
of the characteristics of workload.

Figure 6 shows the architecture of the sampling based
adaptive threshold algorithm applied to a selective caching
policy. It is noted that the sampling based approach can be

employed with any selective caching policies. We control
threshold in sampling based approach, and the threshold is
size in size based caching policy while it is hotness in hotness
based caching policy and probability in probability based
caching policy, respectively. We use a hash function to sample
the workload randomly. We maintain multiple sample caches
that run the cache policy with different thresholds. The size of
each sample cache is maintained proportional to the size of the
sampled workload. Each sample cache works independently
and the results from the sample caches are used to set the
thresholds for the main cache. Figure 6 shows 10 sample
caches with each cache supporting 0.1% of workload (with
0.1% of cache space in each) and the main cache supporting
99% of the remaining workload. In Figure 6, sample caches
employ different thresholds and the threshold employed by the
main cache is based on the observed results of the sampled
caches.

The latency, lifetime, and resulting latency over lifetime of
each sample cache is periodically updated. For each timeframe
s, we estimate lifetime of each sample cache (considering the
lifetime of corresponding storage) T [s]:

T [s] = min(
l′s[s]

w′s[s]
,
l′c[s]

w′c[s]
) (11)

w′c[s] = αw′c[s− 1] + (1− α) · wc[s]

w′s[s] = αw′s[s− 1] + (1− α) · ws[s]
(12)

l′c[s] = lc −
∑s−1

k=1 wc[k]

Nc · Cc

l′s[s] = ls −
∑s−1

k=1 ws[k]

Ns · Cs

(13)

where wc[s] and ws[s] are write count per flash cell in
sample cache and corresponding storage at timeframe s, and
l′s[s] and l′c[s] are remaining lifetime of sample cache and
corresponding storage, respectively. The smoothing factor α
depends on sample rate and size of the timeframe. We use
α = 0.8 for 1% sampling rate, α = 0.9 for 5% and 10%
sampling rate, in this paper. The lifetime T [s] shows how much
time remains from timeframe s to reach the end of lifetime of
the SSD array.

The optimal threshold is the threshold of the cache with the
least latency over lifetime. The optimal threshold pc is applied
to the rest of the cache (except sample caches) in an adaptive
way:

pc[s] = α · pc[s− 1] + (1− α) · ps[s] (14)

where ps[s] is the selected threshold in sample caches in
timeframe s, and pc[s] is the threshold applied to the rest of
cache (except sample caches) at timeframe s.

The result of sample caches violating a latency constraint
are excluded in the optimal threshold selection. When all
sample cache violates a latency constraint, it choose minimum
threshold and receives all workload in cache to work as
traditional LRU cache which is the best in performance.

In this paper, default sampling rate is 1% unless specified.

Es#mate	 latency	 over	 life#me	
for	 each	 sampling	 cache	

hash	 func#on	 (address)	 =	 value	

address of I/O request

sampling	 cache	 policy	

sampling	 cache	 policy	

sampling	 cache	 policy	

sampling	 cache	 policy	

. . .

Probabilis#c	 Caching	
Policy	

99%

0.1%

0.1%

0.1%

0.1%
LRU	 cache	

LRU	 cache	

LRU	 cache	

LRU	 cache	

LRU	 cache	

10%

20%

30%

100%

p %

90%

80%

70%

Select	 the	 op#mal	 probability	 of	 caching	

100 - p %

p:	 moving	 average	 of	 the	
selected	 probability	

Sampling	 Rate	 =	 1%	

Main Storage

Fig. 6. Architecture of probabilistic cache with sampling method (sampling rate: 10%)

Workload	 Generator	

Informa0on	 Collector	

B	 B	 B	 B	 . . .
Block Map

Cache	

Trace	

Storage	

Shadow Cache
(Hotness Policy Only)

Workload	 Locator	

Adap0ve	
Threshold	

Manage Block List (LRU)

Cache

Directly send it to storage

Update  
Threshold

Update Stat.

Issue an I/O request to cache simulator

Fig. 7. Trace-driven simulator

VI. EVALUATION

In this section, different caching policies in Section III are
evaluated when the proposed adaptive workload distribution
approach is employed.

A. Simulator

We built a trace-driven simulator based on the analysis
in Section I to see the behavior of mixed SSD arrays with
different caching policies in Section III. Figure 7 illustrates
the details of our trace-driven simulator.

In the simulator, statistical information such as cache hit rate
and actual read/write count in cache and storage is collected
and periodically updated by information collector. Various
metrics such as wearing out rate (and resulting expected
lifetime) and average latency are estimated based on the
information. For hotness based caching policy, both cache
and shadow cache additionally maintain frequency (hotness)
of references as described in Section III-B.

In the figure, the workload locator assigns appropriate SSDs
to serve incoming I/O requests using a workload classifier
(threshold) which is either a static constant or an adaptive vari-
able. Each caching policy exploits the threshold in a different

way. Request size based caching policy sends I/O requests
whose size is less than a threshold to cache. Hotness based
caching policy caches data whose reference count is more than
a hotness parameter. Probability based policy handles only a
portion p of I/O requests in cache where p is a threshold. The
adaptive threshold algorithm periodically updates the threshold
based on the information from the sample caches. Details of
the adaptive threshold algorithm is discussed in Section V.

In the simulator, internals of SSD (FTL, garbage collection,
and write amplification) are simplified and the simulation of
its detailed behavior remains as future work.

B. Simulation environment

We employ enterprise workload traces from Microsoft Re-
search Cambridge [8]. These 13 enterprise applications exhibit
different characteristics; they have different cache hit rates vs.
cache provisioning 3, read/write ratios, request size distribu-
tion, total unique data size, reference frequency (hotness) etc.

Due to lack of space in the paper, among the 13 MSRC
traces, we choose 2 applications as representatives and show
their cache hit rate vs. cache provisioning in Figure 8. The
characteristics of a full set of applications are discussed in
a recent study [9]. It is observed from Figure 8 that cache
provisioning impacts performance of different workloads dif-
ferently. It is observed that the hit rates of the hardware mon-
itoring application improve considerably with higher cache
provisioning. However, the web server workload in Figure 8b
doesn’t benefit significantly from higher cache provisioning. In
this case, increasing cache size is not efficient. An appropriate
strategy therefore should be established for each workload.
Due to the diversity of the characteristics of applications, static
workload classifiers are overall less efficient than adaptive
workload classifiers.

In this paper, cache provisioning is 5% unless specified, and
other provisioning numbers from 1% to 10% are explored as
well. The capacity of main storage is twice the size of unique

3The cache provisioning is the ratio of cache size to storage size.

01 03 05 07 10
Cache Provisioning (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
ch

e
Hi

t R
at

e

Provisioning vs. Cache Hit Rate (hm)

read
write
total

(a) Hardware monitoring

01 03 05 07 10
Cache Provisioning (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ca
ch

e
Hi

t R
at

e

Provisioning vs. Cache Hit Rate (web)

read
write
total

(b) Web server

Fig. 8. Cache hit rates vs. cache provisioning

data in the workload, i.e. the space utilization of main storage
is 50%.

A default target latency of 0.4ms is considered while other
latency constraints such as 0.2 ms and 1.0 ms are discussed.
Many parameters such as queue depth and average I/O request
size determine the relationship among performance metrics
such as throughput, IOPS, and latency.

Different classes of SSDs have different read/write latencies.
We use 0.04 ms and 0.2 ms of latencies for read and write
operations in high-end SSDs, and 0.2 ms and 1.0 ms of
latencies for read and write operations in low-end SSDs,
respectively. Those numbers are from recent measurement
results of commercial SSDs [10].

We use latency over lifetime as an effectiveness metric
in this paper. The metric is lower (and desirable) when the
expected latency is lower and/or the expected lifetime is
higher.

Some caching policies like [11] favor dirty data in cache to
reduce write workload in main storage. We assume that cache
data eviction algorithm does not consider the dirty/clean status
of data.

C. Adaptive threshold algorithm

Figure 9 shows how the proposed adaptive threshold al-
gorithm tracks the change of the characteristics of workload
online.

Figure 9a shows the change of threshold according to the
change of an average cache miss rate of sample caches. In
the figure, it is clearly shown that threshold decreases for

workload with weak locality. Higher cache miss rate in sample
caches implies weak locality of workload, and caching such
workloads results in faster cache wear out with marginal
benefits in performance. The threshold adapts to the cache
miss rates in sample caches and saves write endurance of cache
in this case.

Figure 9b shows how the proposed algorithm controls
the threshold considering reliability. In the figure, red line
shows write ratio of workload and blue and green lines show
normalized wearing rates of cache and storage in the SSD
array, respectively. Black line shows the smoothed value of
threshold applied to cache.

Since web server application is read intensive and the read
workload has weak locality, large number of read cache misses
wear out the cache faster than the storage without appropriate
workload distribution. In terms of performance, the cache
doesn’t improve latency significantly because of low hit rates.
In this case, bypassing cache can save cache lifetime without
significant penalty in performance. As a result, most of the
read misses (99%) are served directly by main storage and
this improves the latency over lifetime metric.

There are occasional bursts of writes in the workload.
During these bursts, the estimated wearing rate of storage
exceeds the wearing rate of cache and hence the adaptive
algorithm steers some of these writes to cache by increasing
the threshold.

Figure 9a and 9b illustrate how the sampling approach
adapts to workloads and different phases in a workload for
balancing both performance and lifetime.

For some observation periods, none of the sample caches
may meet the target latency. In such cases, LRU policy is
employed as a default and all the requests are sent through
the cache.

D. Different caching policies

We evaluate different caching policies in Figure 10. In the
figure, y-axis shows latency, lifetime, and latency over lifetime
normalized to the results of LRU caching policy for each
MSRC trace.

The results show that the adaptive caching policies work
better than LRU when the latency over lifetime metric is
considered. Probability based caching policy is on average
2.36 times better than LRU caching policy. Size based caching
policy is 2.31 times, and hotness based caching policy is 1.41
times better than LRU, on an average across the 13 traces.

Figure 10a shows that latency can increase with the adaptive
policies when compared to LRU policy. This is intentional
as the adaptive policies are designed to tradeoff latencies for
improving lifetimes. It is also noted that latencies are designed
to stay below a target latency even with the adaptive policies.
Figure 10b shows that adaptive policies improve lifetimes
significantly by appropriately distributing the workloads. For
all the 13 workloads, lifetimes are improved compared to LRU.

Trading latency for lifetime is especially beneficial for
workloads with weak locality, because weak locality can wear
out cache significantly while low hit rates don’t contribute

0 500 1000 1500 2000
Timeframe

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Threshold

Cache Miss Rate

(a) Printer server

0 100 200 300 400 500
Timeframe

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Write Ratio Normalized Wearing Rate (Cache) Normalized Wearing Rate (Storage) Threshold

(b) Web server

Fig. 9. Adaptive threshold (probability of caching) in probabilistic caching policy

significantly to improving performance. Among the 13 work-
loads, mds, stg, web, prn, usr, proj, and src1 have weak
locality. Our solution is selectively caching data and avoids
caching data with weak locality.

However, the proposed algorithm can be less effective than
LRU caching policy for workloads with strong locality. Under
such workloads, decreasing the probability of caching can
result in significant loss in cache hit rates and performance.
Among the traces, hm, prxy, rsrch, and wdev are such work-
loads. Even though LRU policy is employed in one of the
sample caches, it may not always be selected. Caching history
of adaptive cache is different from the history of a pure LRU
cache. As a result, even when the adaptive algorithm adapts
caching policy towards LRU, the performance may lag due
to the differences in working sets in the cache when different
policies are employed during the bursts.

E. Cache provisioning

The impact of the cache provisioning on latency over
lifetime is shown in Figure 11. In the figure, the results are
normalized to the result of LRU with 1% cache provisioning.

The figure shows that higher cache provisioning improves
latency over lifetime by both reducing latency and enhancing
lifetime. We find that the average latency across all the
traces increases by less than 40% for all the adaptive policies
compared to LRU at all the levels of cache provisioning. The
adaptive policies improve lifetimes by significantly more than
this at all the levels of cache provisioning to improve the
overall metric of latency over lifetime.

F. Target latency

The target latency prevents adaptive workload classifiers
from sending too much workload directly to main storage and
under-utilize high-end SSDs cache. Figure 12 observes the
behavior of cache as the target latencies is varied.

The results in Figure 12 show the trade-off between latency
and lifetime clearly. The latency over lifetime is smaller
(or improved) when the latency constraint is relaxed. Larger
latency targets provide more opportunities for performance-
lifetime trade-offs, thus, enhancing the benefits from the
adaptive approach.

Given a configured machine, by extending its lifetime within
given performance bounds, we reduce the cost of ownership

wdev rsrch ts mds stg src2 hm web prn usr proj src1 prxy (mean)
0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 L

a
te

n
cy

LRU

Hotness

Size

Probability

(a) Latency (lower is better)

wdev rsrch ts mds stg src2 hm web prn usr proj src1 prxy (mean)
10-2

10-1

100

101

102

N
o
rm

a
liz

e
d
 L

if
e
ti

m
e

LRU

Hotness

Size

Probability

(b) Lifetime (higher is better)

wdev rsrch ts mds stg src2 hm web prn usr proj src1 prxy (mean)
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 L

a
te

n
cy

 o
v
e
r

Li
fe

ti
m

e

LRU

Hotness

Size

Probability

(c) Latency over lifetime (lower is better)

Fig. 10. Different caching policies on enterprise workloads, target latency = 0.4 ms

1% 3% 5% 7% 10%
Cache Provisioning

10-2

10-1

100

N
o
rm

a
liz

e
d
 L

a
te

n
cy

 o
v
e
r

Li
fe

ti
m

e LRU

Hotness

Size

Probability

Fig. 11. Latency over lifetime vs. cache provisioning

of the storage systems. However, the maintenance costs may
dominate the hardware purchase costs.

1.0 0.4 0.2
Target Latency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 L

a
te

n
cy

 o
v
e
r

Li
fe

ti
m

e LRU

Hotness

Size

Probability

Fig. 12. Latency over lifetime vs. target latencies

G. Sampling rate

We used a sampling rate of 1% in this paper. When we
increase the sampling rate, we can expect more accurate
optimal threshold estimation. However, increasing sampling
rate reduces the amount of workload (and the size of the cache)

1% 5% 10%
Sampling Rate

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 L

a
te

n
cy

 o
v
e
r

Li
fe

ti
m

e LRU

Hotness

Size

Probability

Fig. 13. Latency over lifetime vs. sampling rates

which benefits of the optimal threshold selection. For example,
99% of workload can be distributed with 1% sampling rate,
while 90% of workload can be distributed by more accurate
threshold with 10% sampling rate.

The results from different sampling rates are shown in
Figure 13. The results show that for the workloads considered
in this paper, 1% sampling rate provides better benefits.

It is noted that for higher sampling rates, we can use
smaller observation periods such that the threshold can follow
the optimal value faster. At higher sampling rates, shorter
timeframes may suffice to provide sufficient sampled data to
estimate the thresholds accurately.

It is also noted that the computation required is minimal
(updating of counters) and hence will not have an impact on
total performance.

VII. RELATED WORK

SSDs are promising storage components in modern storage
systems while their reliability is still a concern for its users.
The reliability of SSD is widely studied from ECC [12–14],
to FTL algorithm [11], [15–18], to wear-leveling [19] and to
RAID [20] over SSD arrays [21–24].

Employing SSD cache for HDDs storage systems is a practi-
cal configuration to exploit lower latency of SSDs. Many [5],
[6], [25–29] have suggested different issues on employment
of SSD cache for HDDs based storage systems. The work
[25] studies the feasibility of flash as disk cache and improve
SSD cache’s performance by separating read and write cache,
and cache’s reliability by employing strong ECC. Another
work [26] implemented software interface of SSD cache and
provides functionalities such as data protection and silent data
eviction. The study in [27] examines interesting issues when
SSDs are placed in client-side of large scale storage systems.
The work in [28] introduces a deduplication technique and
optimizes capacity usage of an SSD cache. The recent work
[29] predicts working set size of virtual machine storage and
minimize SSD cache usage based on the prediction.

The impact of write amplification on the performance and
reliability of flash memory is widely studied in the work
[24], [30–34]. In this paper, we assume write amplification
is 1.0 for SSDs in mixed SSD arrays. However, different

write amplification factors can be considered in our analysis
as discussed in Section IV-C.

A recent work [35] controls the effective size of SSD cache
considering write amplification from less efficient garbage
collection when space utilization of the SSD cache is higher.
They control the valid data size in SSD cache and find
the optimal point of the SSD cache where performance and
lifetime of the SSD cache is maximized. Unlike the study,
we balance those metrics of both SSD cache and SSD main
storage at the same time.

Two recent studies [36] and [37] propose a device controller
to balance faster and more reliable (SLC) flash and slower
and less reliable (MLC) flash in terms of both performance
and lifetime. The work [36] controls workload distribution by
sending a portion of frequent (hot) write workload to SLC
and the rest to MLC in an SSD. They use a control system
to adjust wearing and latency of SLC and MLC flash chips.
Unlike those studies, this paper considers an all SSD array
where faster SSDs are used as a cache for slower SSDs. We
consider both reads and writes since read cache misses result
in writes in the cache.

The work in [37] assumes that flash chips can be switched
between SLC and MLC and controls the amount of flash in
SLC mode and MLC mode considering the workload.

The related work [38] improves the lifetime of SSD main
storage by efficient usage of NVRAM cache. They increase
cache hit rate and reduce write workload in main storage by
dividing cache space by four (clean, dirty, frequent, recent)
and by adjusting those four spaces in an SSD cache using
a secondary cache. The goal of the study is to reduce the
number of writes to main storage while improving cache hit
rate, assuming that the cache is robust enough. Unlike this
study, our target system employs high-end SSDs cache which
may wear out faster than low-end SSDs main storage. The
goal of our study is to maximize lifetime of an entire storage
system considering wearing of cache and main storage at the
same time.

The recent work [39] counts read cache misses as write
amplification in high-end SSDs cache, and proposed hotness
based caching policy with a new garbage collection policy.
Their focus is on the SSD cache and do not consider the
latency and lifetime of main storage. They use cache hit rate as
performance metric while we use average latency. In addition,
their hotness and request size based caching policies use static
classifiers while we employ adaptive variable classifiers.

Several studies [40–42] have investigated the problem of
adapting cache sizes in multiple levels of caching.

VIII. CONCLUSION

SSD arrays are receiving wide attention as a storage compo-
nent for enterprise storage systems. In this paper, we showed
that mixed SSD arrays using different classes of SSDs in a
hierarchical manner should consider both latency and lifetime.

We showed that high-end SSDs as a cache can wear out
faster than low-end SSDs main storage under enterprise work-
loads. Based on the analysis, we argue that caching policies

should balance the latency and lifetime of cache and storage
at the same time.

We propose a sampling based method for adaptive workload
distribution in mixed SSD arrays. The proposed solution
enables fine-grained control of workload distribution and bal-
ances latency and lifetime effectively in such SSD arrays. Our
trace-driven simulations show that the proposed method is
adaptive to different workloads and can improve latency over
lifetime metric by up to 2.36 times over a pure LRU policy.

REFERENCES

[1] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of nand
flash memory,” in FAST, Feb. 2012.

[2] H. Kim, S. Seshadri, C. Dickey, and L. Chiu, “Evaluating phase change
memory for enterprise storage systems: A study of caching and tiering
approaches,” in FAST, Feb. 2014.

[3] Pure Storage, FA-400, http://www.purestorage.com/products/fa-400/.
[4] T. Johnson and D. Shasha, “2q: A low overhead high performance

buffer management replacement algorithm,” in Proceedings of the 20th
International Conference on Very Large Data Bases, ser. VLDB ’94.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994, pp.
439–450. [Online]. Available: http://dl.acm.org/citation.cfm?id=645920.
672996

[5] Google, Bcache, http://bcache.evilpiepirate.org/.
[6] Facebook, FlashCache, https://github.com/facebook/flashcache/.
[7] X. Wu and A. L. N. Reddy, “Exploiting concurrency to improve latency

and throughput in a hybrid storage system,” in Modeling, Analysis
Simulation of Computer and Telecommunication Systems (MASCOTS),
2010 IEEE International Symposium on, Aug 2010, pp. 14–23.

[8] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
practical power management for enterprise storage,” in FAST, 2008.

[9] J. Wires, S. Ingram, Z. Drudi, N. Harvey, and A. Warfield, “Character-
izing storage workloads with counter stacks,” in OSDI, 2014.

[10] Anandtech, “Intel ssd sd p3700 review: The pcie ssd transition begins
with nvme,” http://www.anandtech.com/show/8104/intel-ssd-dc-p3700-
review-the-pcie-ssd-transition-begins-with-nvme/3.

[11] S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, and J. Lee, “Cflru:
A replacement algorithm for flash memory,” in Proceedings of
the 2006 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, ser. CASES ’06. New York,
NY, USA: ACM, 2006, pp. 234–241. [Online]. Available: http:
//doi.acm.org/10.1145/1176760.1176789

[12] F. Sun, K. Rose, and T. Zhang, “On the use of strong bch codes
for improving multilevel nand flash memory storage capacity,” in in
IEEE Workshop on Signal Processing Systems (SiPS): Design and
Implementation, 2006.

[13] B. Chen, X. Zhang, and Z. Wang, “Error correction for multi-level nand
flash memory using reed-solomon codes,” in Signal Processing Systems,
2008. SiPS 2008. IEEE Workshop on, Oct 2008, pp. 94–99.

[14] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. Nevill, “Bit error rate in nand flash
memories,” in Reliability Physics Symposium, 2008. IRPS 2008. IEEE
International, April 2008, pp. 9–19.

[15] E. Gal and S. Toledo, “Algorithms and data structures for flash
memories,” ACM Comput. Surv., vol. 37, no. 2, pp. 138–163, Jun.
2005. [Online]. Available: http://doi.acm.org/10.1145/1089733.1089735

[16] F. Chen, T. Luo, and X. Zhang, “Caftl: A content-aware flash
translation layer enhancing the lifespan of flash memory based
solid state drives,” in Proceedings of the 9th USENIX Conference
on File and Stroage Technologies, ser. FAST’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 6–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1960475.1960481

[17] H. Kim and S. Ahn, “Bplru: A buffer management scheme for
improving random writes in flash storage,” in Proceedings of the 6th
USENIX Conference on File and Storage Technologies, ser. FAST’08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 16:1–16:14.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1364813.1364829

[18] A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: A flash translation layer
employing demand-based selective caching of page-level address map-
pings,” in Penn State University, 2008.

[19] L.-P. Chang, “On efficient wear leveling for large-scale flash-
memory storage systems,” in Proceedings of the 2007 ACM
Symposium on Applied Computing, ser. SAC ’07. New York,
NY, USA: ACM, 2007, pp. 1126–1130. [Online]. Available: http:
//doi.acm.org/10.1145/1244002.1244248

[20] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (raid),” in Proceedings of the 1988 ACM
SIGMOD International Conference on Management of Data, ser.
SIGMOD ’88. New York, NY, USA: ACM, 1988, pp. 109–116.
[Online]. Available: http://doi.acm.org/10.1145/50202.50214

[21] Q. Xin, E. Miller, T. Schwarz, D. D. E. Long, S. Brandt, and W. Litwin,
“Reliability mechanisms for very large storage systems,” in Mass
Storage Systems and Technologies, 2003. (MSST 2003). Proceedings.
20th IEEE/11th NASA Goddard Conference on, April 2003, pp. 146–
156.

[22] B. Mao, H. Jiang, D. Feng, S. Wu, J. Chen, L. Zeng, and L. Tian,
“Hpda: A hybrid parity-based disk array for enhanced performance
and reliability,” in Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, April 2010, pp. 1–12.

[23] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi,
“Differential raid: Rethinking raid for ssd reliability,” Trans. Storage,
vol. 6, no. 2, pp. 4:1–4:22, Jul. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1807060.1807061

[24] N. Jeremic, G. Mühl, A. Busse, and J. Richling, “The pitfalls of
deploying solid-state drive raids,” in Proceedings of the 4th Annual
International Conference on Systems and Storage, ser. SYSTOR ’11.
New York, NY, USA: ACM, 2011, pp. 14:1–14:13. [Online]. Available:
http://doi.acm.org/10.1145/1987816.1987835

[25] T. Kgil, D. Roberts, and T. Mudge, “Improving nand flash based disk
caches,” in Computer Architecture, 2008. ISCA ’08. 35th International
Symposium on, June 2008, pp. 327–338.

[26] M. Saxena, M. M. Swift, and Y. Zhang, “Flashtier: A lightweight,
consistent and durable storage cache,” in Proceedings of the 7th
ACM European Conference on Computer Systems, ser. EuroSys ’12.
New York, NY, USA: ACM, 2012, pp. 267–280. [Online]. Available:
http://doi.acm.org/10.1145/2168836.2168863

[27] D. A. Holland, E. Angelino, G. Wald, and M. I. Seltzer, “Flash caching
on the storage client,” in Presented as part of the 2013 USENIX
Annual Technical Conference (USENIX ATC 13). San Jose, CA:
USENIX, 2013, pp. 127–138. [Online]. Available: https://www.usenix.
org/conference/atc13/technical-sessions/presentation/holland

[28] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wallace,
“Nitro: A capacity-optimized ssd cache for primary storage,” in
2014 USENIX Annual Technical Conference (USENIX ATC 14).
Philadelphia, PA: USENIX Association, Jun. 2014, pp. 501–512.
[Online]. Available: https://www.usenix.org/conference/atc14/technical-
sessions/presentation/li cheng 1

[29] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and M. Zhao,
“Cloudcache: On-demand flash cache management for cloud
computing,” in 14th USENIX Conference on File and Storage
Technologies (FAST 16). Santa Clara, CA: USENIX Association,
Feb. 2016, pp. 355–369. [Online]. Available: https://www.usenix.org/
conference/fast16/technical-sessions/presentation/arteaga

[30] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
amplification analysis in flash-based solid state drives,” in Proceedings
of SYSTOR 2009: The Israeli Experimental Systems Conference, ser.
SYSTOR ’09. New York, NY, USA: ACM, 2009, pp. 10:1–10:9.
[Online]. Available: http://doi.acm.org/10.1145/1534530.1534544

[31] A. Jagmohan, M. Franceschini, and L. Lastras, “Write amplification
reduction in nand flash through multi-write coding,” in Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, May
2010, pp. 1–6.

[32] S. Boboila and P. Desnoyers, “Write endurance in flash drives:
Measurements and analysis,” in Proceedings of the 8th USENIX
Conference on File and Storage Technologies, ser. FAST’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 9–9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855511.1855520

[33] P. Desnoyers, “Mathematical models of write amplification in
ftls,” Slides, presented in NVRAMOS 2011, http://dcslab.hanyang.ac.
kr/nvramos11fall/presentation/Desnoyers-NVRAMOS-2011.pdf, Korea,
Republic of, 2011.

[34] ——, “Analytic modeling of ssd write performance,” in Proceedings
of the 5th Annual International Systems and Storage Conference, ser.

SYSTOR ’12. New York, NY, USA: ACM, 2012, pp. 12:1–12:10.
[Online]. Available: http://doi.acm.org/10.1145/2367589.2367603

[35] Y. Oh, J. Choi, D. Lee, and S. Noh, “Caching less for better performance:
balancing cache size and update cost of flash memory cache in hybrid
storage systems,” in FAST, Feb. 2012.

[36] M. Murugan and D. Du, “Hybrot: Towards improved performance in
hybrid slc-mlc devices,” in MASCOTS, 2012.

[37] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim, “Flexfs: A flexible flash
file system for mlc nand flash memory,” in Proceedings of the 2009
Conference on USENIX Annual Technical Conference, ser. USENIX’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 9–9. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855807.1855816

[38] Z. Fan, D. Du, and D. Voigt, “H-arc: A non-volatile memory based
cache policy for solid state drives,” in MSST, 2014.

[39] J. Yang, N. Plasson, G. Gillis, and N. Talagala, “Hec: Improving
endurance of high performance flash-based cache devices,” in
Proceedings of the 6th International Systems and Storage Conference,
ser. SYSTOR ’13. New York, NY, USA: ACM, 2013, pp. 10:1–10:11.
[Online]. Available: http://doi.acm.org/10.1145/2485732.2485743

[40] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead
replacement cache,” in Proceedings of the 2Nd USENIX Conference
on File and Storage Technologies, ser. FAST ’03. Berkeley, CA,
USA: USENIX Association, 2003, pp. 115–130. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1090694.1090708

[41] S. Huang, Q. Wei, J. Chen, C. Chen, and D. Feng, “Improving flash-
based disk cache with lazy adaptive replacement,” in Mass Storage
Systems and Technologies (MSST), 2013 IEEE 29th Symposium on, May
2013, pp. 1–10.

[42] R. Santana, S. Lyons, R. Koller, R. Rangaswami, and J. Liu, “To
arc or not to arc,” in 7th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 15). Santa Clara, CA: USENIX
Association, Jul. 2015. [Online]. Available: https://www.usenix.org/
conference/hotstorage15/workshop-program/presentation/santana

