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What have we done? 
• CODES: Enabling Co-Design of Multi-Layer Exascale Storage 

Architectures (RPI and ANL) 

• Goal: apply simulation to the understanding and design of 
complex HPC storage system.  

• We modeled a leadership class storage system[1]. 
– Argonne’s Blue Gene/P  

– Simulate 128K way parallelism  

– Includes a file system model: PVFS 

• Burst Buffer model and study is based on BG/P model. 

 

 
          [1] Modeling a Leadership-scale Storage System,  N Liu, C Carothers, J Cope, P Carns, R Ross, A Crume, C Maltzahn 

          9th International Conference on Parallel Processing and Applied Mathematics 2011 (PPAM 2011) 
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Why do we need burst buffer? 

  Aggregate I/O throughput over one-minute intervals on ALCF BG/P [2] 

• Modern HPC storage systems are designed to absorb peak I/O burst resulting in 
bandwidth waste.  
• This storage system designs cannot keep pace with the growing data demands 
as supercomputers evolve to the era of exascale. 
 
e.g. statistics from ALCF Intrepid Blue Gene/P system shows that 98.8% of the time the I/O  
system is at 33%  bandwidth capacity or less,  and 69.6% of the time the system is at 5%  
bandwidth capacity or less. 

[2] Understanding and improving computational science storage access through continuous characterization 
Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert Latham, Robert Rossl  
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Simulated System: IBM Blue Gene/P 
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Incorporating Burst Buffers on Edge of System 

 
•We propose augmenting existing I/O node designs with a tier of solid-state disk (SSD) 
burst buffers. 
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Tools: Discrete Event Simulation 
• Discrete event simulation: computer model for a system where changes in 

the state of the system occur at discrete points in simulation time. 

 

• Fundamental concepts: 

system state (state variables) 

state transitions (events) 

 

• A DES computation can be viewed as a sequence of event computations, 
with each event computation is assigned a (simulation time) time stamp 

 

• Each event computation can 

modify state variables 

schedule new events 
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Why PDES? 
Why Parallel Discrete-Event Simulation (PDES)? 

– Large-scale systems are difficult to understand 

– Analytical models are often constrained 

 

Parallel DES simulation offers: 
– Dramatically shrink model’s execution-time 

– Prediction of future  “what-if” systems performance 

– Potential for real-time decision support 

• Minutes instead of days 

• Analysis can be done right away 

– Example models: national air space (NAS), ISP backbone(s), distributed 
content caches, next generation supercomputer systems. 
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ROSS: Parallel Discrete Event Simulator  
• Developed in ANSI C,  

API is simple and lean. 

 

• Using Jefferson’s Time Warp  

event scheduling mechanism. 

• Reverse computation. 

 

• Global virtual time algorithm  

exploits IBM Blue Gene’s fast  

barrier and collective networks. 

 

• ROSS main page:  

http://odin.cs.rpi.edu/ross/index.php/Main_Page 
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Write Request Event-Driven Model 

application 
level request 

CIOD level 

file system level 

storage level 
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Snapshot of the PVFS Write Model 
• link level handshake and data transfer 
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Burst Buffer PDES Model 
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 Study of Bursty Applications 

Project Procs Nodes Total 

Written 

Run Time 

(hours) 

Avg. Size and Subsequent Idle Time for Write Bursts>1 GiB 

Count Size Size/Node Size/ION Idle Time (sec) 

PlasmaPhysics 131,072 32,768 67.0 TiB 10.4 1 33.5 TiB 1.0 GiB 67.0 GiB 7554 
1 33.5 TiB 1.0 GiB 67.0 GiB end of job 

Turbulence1 131,072 32,768 8.9 TiB 11.5 5 128.2 GiB 4.0 MiB 256.4 MiB 70 
     1 128.2 GiB 4.0 MiB 256.4 MiB end of job 

     421 19.6 GiB 627.2 KiB 39.2 MiB 70 
AstroPhysics 32,768 8,096 8.8 TiB 17.7 1 550.9 GiB 68.9 MiB 4.3 GiB end of job 
     8 423.4 GiB 52.9 MiB 3.3 GiB 240 
     37 131.5 GiB 16.4 MiB 1.0 GiB 322 
     140 1.6 GiB 204.8 KiB 12.8 MiB 318 

Turbulence2 4,096 4,096 5.1 TiB 11.6 21 235.8 GiB 59.0 MiB 3.7 GiB 1.2 
     1 235.8 GiB 59.0 MiB 3.7 GiB end of job 

 

 TABLE I: Top four write-intensive jobs on Intrepid, December 2011 
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• Argonne’s Blue Gene/P system host many scientific applications. 
• We quantify the I/O behavior by analyzing one month of production I/O activity 

from December 2011 using Darshan. 
• Darshan captures application-level access pattern information with per 
process and per file granularity. (lightweight I/O characterization tool) 



Burst Buffer Model Parameters  

Vendor Size (TiB) NAND Bandwidth (GiB/s) Latency (μs) 

      Write Read Write Read 

FusionIO 0.40 SLC 1.30 1.40 15 47 

FusionIO 1.20 MLC 1.20 1.30 15 68 

Intel 0.25 MLC 0.32 0.50 80 65 

Virident 0.30 SLC 1.10 1.40 16 47 

Virident 1.40 MLC 0.60 1.30 19 62 

TABLE II: Summary of relevant SSD device parameters 
and technology available as of January 2012 

Burst buffer latency model: 
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Single I/O Workload Case 

Simulated performance of IOR for various storage 
system and burst buffer configurations 

• Use IOR benchmark  
( consecutive 4MiB write 
 requests) 
• Capture write time, excludes 
open/close time 
• Full storage system uses 128 
file servers 
• Half storage system uses 64 
file servers 
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Mixed Workload: Application View   

Full storage system with burst buffer 
disabled. 
Jobs execution time = 5.5 hours 

Full storage system with burst buffer 
enabled.  
Jobs execution time = 4.4 hours 
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PlasmaPhysics: 2 large (256 MiB) write  
with 2-hour interval. (32K processes) 
AstroPhysics:  3 small write followed by 1  
large write, repeat 11 times. (64K processes) 
Turbulence1: 220 small write. (32K processes) 



Mixed Workload: Server View  

Full storage system with burst buffer 
disabled.  
 

Full storage system with burst buffer 
enabled.  
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Application View vs. Server View  

Full storage system with burst buffer 
enabled. (Application View) 
 
Jobs execution time = 4.4 hours 

Full storage system with burst buffer 
enabled. (Server View) 
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Full Storage vs. Half Storage: Application View   

Full storage system with burst buffer 
disabled. 
Jobs execution time = 5.5 hours 

Half storage system with burst buffer 
enabled.  
Jobs execution time = 4.4 hours 
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Conclusions 
• Burst buffers have been proposed as a way to meet peak I/O rates with 

lower performance external storage. 

• We've tried to better quantify the benefits of this approach in this work. 

• Bursts from applications today are of modest size, as measured on our 
system, allowing use of limited size buffers. 

• In the context of the BG/P architecture, buffers integrated into I/O nodes 
could provide a measurable improvement in application time to solution 
while simultaneously enabling the deployment of a less capable external  

      I/O system. 
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Future Work 
 

• Investigate the use of burst buffer (in-system storage) on 
different tiers of the storage system 

• Enable the use of simulator framework to future system 
architecture 

• Understand complex system components and facilitate the 
design through simulation  
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