
On the Role of Burst Buffers in Leadership-
Class Storage Systems

Ning Liu, Jason Cope, Philip Carns, Christopher

Carothers, Robert Ross, Gary Grider, Adam Crume,
Carlos Maltzahn

Contact: liun2@cs.rpi.edu, chrisc@cs.rpi.edu, rross@mcs.anl.gov

mailto:liun2@cs.rpi.edu
mailto:chrisc@cs.rpi.edu
mailto:rross@mcs.anl.gov

What have we done?
• CODES: Enabling Co-Design of Multi-Layer Exascale Storage

Architectures (RPI and ANL)

• Goal: apply simulation to the understanding and design of
complex HPC storage system.

• We modeled a leadership class storage system[1].
– Argonne’s Blue Gene/P

– Simulate 128K way parallelism

– Includes a file system model: PVFS

• Burst Buffer model and study is based on BG/P model.

 [1] Modeling a Leadership-scale Storage System, N Liu, C Carothers, J Cope, P Carns, R Ross, A Crume, C Maltzahn

 9th International Conference on Parallel Processing and Applied Mathematics 2011 (PPAM 2011)

2

Why do we need burst buffer?

 Aggregate I/O throughput over one-minute intervals on ALCF BG/P [2]

• Modern HPC storage systems are designed to absorb peak I/O burst resulting in
bandwidth waste.
• This storage system designs cannot keep pace with the growing data demands
as supercomputers evolve to the era of exascale.

e.g. statistics from ALCF Intrepid Blue Gene/P system shows that 98.8% of the time the I/O
system is at 33% bandwidth capacity or less, and 69.6% of the time the system is at 5%
bandwidth capacity or less.

[2] Understanding and improving computational science storage access through continuous characterization
Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert Latham, Robert Rossl

3

Simulated System: IBM Blue Gene/P

4

Incorporating Burst Buffers on Edge of System

•We propose augmenting existing I/O node designs with a tier of solid-state disk (SSD)
burst buffers.

5

Tools: Discrete Event Simulation
• Discrete event simulation: computer model for a system where changes in

the state of the system occur at discrete points in simulation time.

• Fundamental concepts:

system state (state variables)

state transitions (events)

• A DES computation can be viewed as a sequence of event computations,
with each event computation is assigned a (simulation time) time stamp

• Each event computation can

modify state variables

schedule new events

6

Why PDES?
Why Parallel Discrete-Event Simulation (PDES)?

– Large-scale systems are difficult to understand

– Analytical models are often constrained

Parallel DES simulation offers:
– Dramatically shrink model’s execution-time

– Prediction of future “what-if” systems performance

– Potential for real-time decision support

• Minutes instead of days

• Analysis can be done right away

– Example models: national air space (NAS), ISP backbone(s), distributed
content caches, next generation supercomputer systems.

7

ROSS: Parallel Discrete Event Simulator
• Developed in ANSI C,

API is simple and lean.

• Using Jefferson’s Time Warp

event scheduling mechanism.

• Reverse computation.

• Global virtual time algorithm

exploits IBM Blue Gene’s fast

barrier and collective networks.

• ROSS main page:

http://odin.cs.rpi.edu/ross/index.php/Main_Page

8

http://odin.cs.rpi.edu/ross/index.php/Main_Page

Write Request Event-Driven Model

application
level request

CIOD level

file system level

storage level

9

Snapshot of the PVFS Write Model
• link level handshake and data transfer

10

Burst Buffer PDES Model

11

 Study of Bursty Applications

Project Procs Nodes Total

Written

Run Time

(hours)

Avg. Size and Subsequent Idle Time for Write Bursts>1 GiB

Count Size Size/Node Size/ION Idle Time (sec)

PlasmaPhysics 131,072 32,768 67.0 TiB 10.4 1 33.5 TiB 1.0 GiB 67.0 GiB 7554
1 33.5 TiB 1.0 GiB 67.0 GiB end of job

Turbulence1 131,072 32,768 8.9 TiB 11.5 5 128.2 GiB 4.0 MiB 256.4 MiB 70
 1 128.2 GiB 4.0 MiB 256.4 MiB end of job

 421 19.6 GiB 627.2 KiB 39.2 MiB 70
AstroPhysics 32,768 8,096 8.8 TiB 17.7 1 550.9 GiB 68.9 MiB 4.3 GiB end of job
 8 423.4 GiB 52.9 MiB 3.3 GiB 240
 37 131.5 GiB 16.4 MiB 1.0 GiB 322
 140 1.6 GiB 204.8 KiB 12.8 MiB 318

Turbulence2 4,096 4,096 5.1 TiB 11.6 21 235.8 GiB 59.0 MiB 3.7 GiB 1.2
 1 235.8 GiB 59.0 MiB 3.7 GiB end of job

 TABLE I: Top four write-intensive jobs on Intrepid, December 2011

12

• Argonne’s Blue Gene/P system host many scientific applications.
• We quantify the I/O behavior by analyzing one month of production I/O activity

from December 2011 using Darshan.
• Darshan captures application-level access pattern information with per
process and per file granularity. (lightweight I/O characterization tool)

Burst Buffer Model Parameters

Vendor Size (TiB) NAND Bandwidth (GiB/s) Latency (μs)

 Write Read Write Read

FusionIO 0.40 SLC 1.30 1.40 15 47

FusionIO 1.20 MLC 1.20 1.30 15 68

Intel 0.25 MLC 0.32 0.50 80 65

Virident 0.30 SLC 1.10 1.40 16 47

Virident 1.40 MLC 0.60 1.30 19 62

TABLE II: Summary of relevant SSD device parameters
and technology available as of January 2012

Burst buffer latency model:

13

Single I/O Workload Case

Simulated performance of IOR for various storage
system and burst buffer configurations

• Use IOR benchmark
(consecutive 4MiB write
 requests)
• Capture write time, excludes
open/close time
• Full storage system uses 128
file servers
• Half storage system uses 64
file servers

14

Mixed Workload: Application View

Full storage system with burst buffer
disabled.
Jobs execution time = 5.5 hours

Full storage system with burst buffer
enabled.
Jobs execution time = 4.4 hours

15

PlasmaPhysics: 2 large (256 MiB) write
with 2-hour interval. (32K processes)
AstroPhysics: 3 small write followed by 1
large write, repeat 11 times. (64K processes)
Turbulence1: 220 small write. (32K processes)

Mixed Workload: Server View

Full storage system with burst buffer
disabled.

Full storage system with burst buffer
enabled.

16

Application View vs. Server View

Full storage system with burst buffer
enabled. (Application View)

Jobs execution time = 4.4 hours

Full storage system with burst buffer
enabled. (Server View)

17

Full Storage vs. Half Storage: Application View

Full storage system with burst buffer
disabled.
Jobs execution time = 5.5 hours

Half storage system with burst buffer
enabled.
Jobs execution time = 4.4 hours

18

Conclusions
• Burst buffers have been proposed as a way to meet peak I/O rates with

lower performance external storage.

• We've tried to better quantify the benefits of this approach in this work.

• Bursts from applications today are of modest size, as measured on our
system, allowing use of limited size buffers.

• In the context of the BG/P architecture, buffers integrated into I/O nodes
could provide a measurable improvement in application time to solution
while simultaneously enabling the deployment of a less capable external

 I/O system.

19

Future Work

• Investigate the use of burst buffer (in-system storage) on
different tiers of the storage system

• Enable the use of simulator framework to future system
architecture

• Understand complex system components and facilitate the
design through simulation

20

Acknowledgements
• Special thanks to Dr. Jason Cope;

• Special thanks to my advisor Prof. Christopher Carothers,
thesis advisor Dr. Robert Ross;

• Thanks to Philip Carns, Kevin Harms, Gary Grider, Carlos
Maltzahn, and Adam Crume.

• This work was supported in part by the Office of Advanced Scientific Computer Research,

Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357 and partially by
Contract DE-SC0005428 and the LANL/UCSC Institute for Scalable Scientific Data
Management (ISSDM).

• Thanks everyone here today!

• Questions?

21

