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PERSISTENT MEMORY (PM)

*» Hybrid characteristics of memory and storage
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PM CHALLENGES

“* PM is directly accessible by CPU
% BUT ...
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PM CHALLENGES:
THE COSTS OF ORDERING

* Ordering requires cache line flushes, barriers, and
ADR (asynchronous DRAM refresh)

* Increased cost of operations
 More redundant metadata -> More ordering required
« GOAL—>

 Reduce ordering requirements
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PM CHALLENGES:
ATOMIC DATA DURABILITY

P

: PL) . P203) t\P3(x3) . P3(msync) Final
0 1 2 3

Version

Requirements:

1. Make data atomically durable (ALL or NONE)
2. Revert back to initial state in case of failure
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PM OPPORTUNITIES:
SHARED CONSISTENCY

NOVA ATOMIC MMAP

Private copy

Cache coherent visibility

Requirements:
1. Updates should be visible to all the shared processes
2. Should support atomic durability of all updates across a shared region
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PM OPPORTUNITIES:
SIMPLE MEMORY-LIKE TRANSACTIONS

Program A

Allocate persistent Obj1;
Allocate persistent Obj2;

Begin Transaction || & odrammers
: . 1. Must track
Objl opera.tlons all updates
End transaction to persistent
_ objects
Begin Transaction || 2. Must
Obj2 operations annotate
End transactions individual
transactions

Program B

A = mmap(PM);
Allocate objects Obj1,0bj2 from
mapped area

Operations involving Obj1, Obj2.
Sync() «

More Operations on both Obj1, Obj2
Sync() «

|

Programmers simply call Sync() to
persist all updates in a mapped area
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APPLICATIONS REQUIREMENTS FOR PM

Arbitrary &
Unordered
Allocation

Persistent

Namespace PM Based
Application

Consistent Simple
Sharing Memory Like
Support Transactions
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CONTEMPORARY SOLUTIONS

/" DAX File Systems) (Memory Subsystem) (Persistent Heaps
Mnemosyne
0S NV-Heaps

/" Regular File Sys.

i)
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/" Atomic Msync

/" Replication

- J

Mojim
RDMA




CONTEMPORARY SOLUTIONS

/ Region System \

o /

Q Arbitrary and Unordered Allocation Q Consistent Sharing Support

Q Simple Memory Like Transactions Q Mapped Data Consistency

Q Persistent Namespace Mapped Data Consistency (Partial)

N
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REGION SYSTEM

We present “Region System”, a kernel subsystem, to
support persistent memory to achieve the following
goals:

 Minimize unwanted latency in the persistent memory
access path;

e Provide users with direct and consistent access to
shared persistent memory; and

 Demonstrate modifications of the existing
applications for optimized usage.
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REDEFINED OS MEMORY/STORAGE
STACK

USER

KERNEL

APPLICATIONS
@ © ©
Memory library (POSIX) PM librancs FS library (POSIX)

| ' ' Virtual File System
|

Rest Virtuat - \ | .

of the Memory . Page Tablps 3 Region i nvinfs ex1stm/%%s (extd, nils, cic.)

emel @ B = i : ] ‘ System | -~ Block Layer
DRAM PCM | | STTRAM | ReRAM --- @

NOT intended as replacement for File Systems or Memory Subsystem
RS should serve as a core “Persistent Memory Support System” usable
by applications, file systems, and other kernel subsystems.
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ARCHITECTURE
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CONSISTENCY STATES

0 0 No Ppage
0 y Invalid — There can not be a snapshot without current
X 0 Un-synced page, mapped to the address space

X ==Y, page in synced state

X 1=y, page in unsynced state, “y” is the consistent version
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REGION SYSTEM (RS) INTERFACE

Class System Call

region_d open (char region_name, flags f)

Namespace int close (region_d rd)
int delete (region_d rd)
ppage_no alloc_ppage (region_d rd)

Allocation - -
int free_ppage (region_d rd, ppage_no ppn)
vaddr pmmap(vaddr va, region_d rd, ppage_no, int
nbytes, flags f)

Mapping &

Consistency

int pmunmap(vaddr va)

pmsync(vaddr va)
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METADATA OPERATIONS

e Persistent Operations

» Modifies persistent metadata

« Volatile Operations

 No updates to persistent metadata

* Persistent operations are designed to achieve atomic
durability

5/19/2017 16



METADATA OPERATION COMPARISON

Persistent Operations

5/19/2017

1

Volatile Operations
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MAPPED DATA CONSISTENCY
CHALLENGES

 Avoid Unwanted Durability

Applications want to make updates durable only updates
a msync() invocation.

 Updates are made durable in PM before a msync call.

In case of a failure, the mapped PM area will contain
uncommitted data.

 Protecting the Sync

e During sync operation no applications should be allowed

to write to mapped PM - difficult to achieve due to direct
CPU access.
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ATOMIC DURABILITY WITH PMSYNC

|dentify the dirty pages
Write protect the pages
Flush dirty cache lines

Copy-on-write protection for future writes to
a sync’ed page
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AVOIDING COW PROPAGATION
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PMSYNC EXAMPLE

PMSYNC A

7. PMSYNC_COMPLETE

\
Is_root
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PMSYNC COMPARISON WITH

EXT4-DAX
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LIBPMEM-REGION

Non-transactional pmem-flush
All or None policy does not work
A portion of the updates can be lost

QOutcome
1. Add atomic durability guarantee to libpmem
2. Reduce risk factor for libraries built on top of libopmem
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LIBPMEM COMPARISONS
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LIBPMEM COMPARISONS
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SUMMARY

 Region System Features

* Provides arbitrary and unordered allocation and de-
allocation

« Minimizes ordering requirements by eliminating
redundancy

 Provides transparent sharing and atomic durability of
mapped data with competitive performance

 Usable by File systems, Applications, Libraries, and
other kernel subsystems or modules.

e Source code will be made public soon!
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Thanks!

QUESTIONS?
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