
Mohammad Chowdhury (mchow017@fiu.edu)

Raju Rangaswami (raju@cs.fiu.edu)

Florida International University

NATIVE OS SUPPORT FOR 
PERSISTENT MEMORY WITH 

REGIONS

mailto:mchow017@fiu.edu


PERSISTENT MEMORY (PM)

5/19/2017 2

 Hybrid characteristics of memory and storage 

Memory

• Volatile
• Byte-addressable access
• Fast

Storage

• Non-volatile/Persistent
• Block I/O access
• Slow

Persistent Memory

• Non-Volatile/Persistent
• Byte-addressable access
• Fast

Read/Write 
latency: 
4X-10X 

of memory 



PM CHALLENGES

5/19/2017 3

 PM is directly accessible by CPU
 BUT …
Caches and Memory controller sit between PM and CPU

Caches write dirty pages to DRAM/PM according to 
cache eviction policy

Memory Controller optimizes performance by reordering 
the updates

PM resident data can be 
corrupted after a system failure 
if ordering of updates is violated



PM CHALLENGES: 
THE COSTS OF ORDERING

5/19/2017 4

• Ordering requires cache line flushes, barriers, and 
ADR (asynchronous DRAM refresh)
• Increased cost of operations

• More redundant metadata  More ordering required
• GOAL

• Reduce ordering requirements



PM CHALLENGES:
ATOMIC DATA DURABILITY 

5/19/2017 5

P1 P2 P3

PM

t0 t1 t3t2
Final
Version

P1(x) P2(x2) P3(x3)

248

P3(msync)

MemoryNull PM4All good!!
“4” 

shouldn’t 
be here

Requirements: 
1. Make data atomically durable (ALL or NONE)
2. Revert back to initial state in case of failure



PM OPPORTUNITIES:
SHARED CONSISTENCY

5/19/2017 6

P2

DAX/Regular MMAP

P1

PM

• MAP_SHARED
• Updates immediately reflected in process 

address spaces
• NOT atomically durable

NOVA ATOMIC MMAP

PM

• MAP_ATOMIC  MAP_PRIVATE
• Updates only visible to the process
• Atomically durable 
• Forfeits sharing/cache coherency support

P2P1

Private copy

Requirements: 
1. Updates should be visible to all the shared processes

2. Should support atomic durability of all updates across a shared region

Cache coherent visibility



PM OPPORTUNITIES:
SIMPLE MEMORY-LIKE TRANSACTIONS

5/19/2017 7

Program A

Allocate persistent Obj1;
Allocate persistent Obj2;

Begin Transaction
Obj1 operations

End transaction

Begin Transaction
Obj2 operations

End transactions

Program B 

A = mmap(PM);
Allocate objects Obj1,Obj2 from 
mapped area

Operations involving Obj1, Obj2.
Sync()

More Operations on both Obj1, Obj2
Sync()

Programmers
1. Must track 

all updates 
to persistent 
objects

2. Must 
annotate 
individual 
transactions Programmers simply call Sync() to 

persist all updates in a mapped area



APPLICATIONS REQUIREMENTS FOR PM

5/19/2017 8

Persistent
Namespace

Consistent 
Sharing 
Support

Mapped 
Data 

Consistency

Arbitrary & 
Unordered
Allocation

Simple 
Memory Like 
Transactions

PM Based 
Application



CONTEMPORARY SOLUTIONS

5/19/2017 9

DAX File Systems Memory Subsystem Persistent Heaps

Regular File Sys. Atomic Msync Replication

NOVA, EXT4-
DAX, PMFS

Failure Atomic 
Msync (EXT4-JBD)

EXT4, BTRFS, 
etc.

Mnemosyne
NV-Heaps

LibpmemObj
OS 

Mojim
RDMA



Mapped Data Consistency (Partial)

CONTEMPORARY SOLUTIONS

5/19/2017 10

DAX File Systems Memory Subsystem Persistent Heaps

Regular File Sys. Atomic Msync Replication

Arbitrary and Unordered Allocation

Mapped Data Consistency

Persistent Namespace

Consistent Sharing Support

Simple Memory Like Transactions

Region System



REGION SYSTEM

5/19/2017 11

We present “Region System”, a kernel subsystem, to 
support persistent memory to achieve the following 
goals: 
• Minimize unwanted latency in the persistent memory 

access path;
• Provide users with direct and consistent access to 

shared persistent memory; and 
• Demonstrate modifications of the existing 

applications for optimized usage. 



REDEFINED OS MEMORY/STORAGE 
STACK

5/19/2017 12

NOT intended as replacement for File Systems or Memory Subsystem
RS should serve as a core “Persistent Memory Support System” usable 
by applications, file systems, and other kernel subsystems.



ARCHITECTURE

5/19/2017 13

Region: 
Collection of 
persistent pages

PPAGES: 4KB 
PM pages



CONSISTENCY STATES

5/19/2017 14

Current Snapshot State

0 0 No Ppage

0 y Invalid – There can not be a snapshot without current

x 0 Un-synced page, mapped to the address space

x y

x == y, page in synced state

x != y, page in unsynced state, “y” is the consistent version



REGION SYSTEM (RS) INTERFACE

5/19/2017 15

Class System Call

Namespace

region_d open (char region_name, flags f)

int close (region_d rd )

int delete (region_d rd)

Allocation
ppage_no alloc_ppage (region_d rd)

int free_ppage (region_d rd, ppage_no ppn)

Mapping & 
Consistency

vaddr pmmap(vaddr va, region_d rd, ppage_no, int
nbytes, flags f)

int pmunmap(vaddr va)

pmsync(vaddr va)



METADATA OPERATIONS

5/19/2017 16

• Persistent Operations
• Modifies persistent metadata

• Volatile Operations
• No updates to persistent metadata

• Persistent operations are designed to achieve atomic 
durability



METADATA OPERATION COMPARISON

5/19/2017 17

Persistent Operations

2.8x 2.2x
1.1x 1.25x 2.3x

Volatile Operations



MAPPED DATA CONSISTENCY 
CHALLENGES

5/19/2017 18

• Avoid Unwanted Durability
• Applications want to make updates durable only updates 

a msync() invocation.
• Updates are made durable in PM before a msync call.
• In case of a failure, the mapped PM area will contain 

uncommitted data.

• Protecting the Sync
• During sync operation no applications should be allowed 

to write to mapped PM  difficult to achieve due to direct 
CPU access.



ATOMIC DURABILITY WITH PMSYNC

5/19/2017 19

1. Identify the dirty pages
2. Write protect the pages
3. Flush dirty cache lines
4. Copy-on-write protection for future writes to 

a sync’ed page



AVOIDING COW PROPAGATION

5/19/2017 20

1

2

4

3

5

86 7

109

1

2

4

7

9

Conventional CoW
Copy-on-write for page 9

1

2

54

9

3

c s c s c s

10

6 7 8

9

Region System CoW
Copy-on-write for page 9



PMSYNC EXAMPLE

5/19/2017 21

c s c s c s

rs_root
rnode: Brnode: A

c s c s c s s c s c sc s c s c s
1 2 3 4 5 61 24 5 6

PM
Vo

la
til

e

cache

CPU 1 CPU 2

mm

vma vma

E3 E6 E8E7 E9 EE F0 F2E2

Task Z

tlb

mmu

mm

vma vma

Task Y 

Page 
tables

1. IPI

2. Write
Protect
E2

2. Wait for
CPU 1

3. IPI returns

4. Flush
Cache line for 
E2

5. PMSYNC_IN_PROGRESS

6. Change s

7. PMSYNC_COMPLETE PMSYNC A

Locked
3

c



PMSYNC COMPARISON WITH
EXT4-DAX

5/19/2017 22

La
te

nc
y 

(μ
s)

File/Region size



LIBPMEM-REGION

5/19/2017 23

Non-transactional pmem-flush
All or None policy does not work 

A portion of the updates can be lost

Outcome
1. Add atomic durability guarantee to libpmem

2. Reduce risk factor for libraries built on top of libpmem



LIBPMEM COMPARISONS

5/19/2017 24



LIBPMEM COMPARISONS

5/19/2017 25



SUMMARY

5/19/2017 26

• Region System Features
• Provides arbitrary and unordered allocation and de-

allocation

• Minimizes ordering requirements by eliminating 
redundancy

• Provides transparent sharing and atomic durability of 
mapped data with competitive performance

• Usable by File systems, Applications, Libraries, and 
other kernel subsystems or modules.

• Source code will be made public soon!



QUESTIONS?

Thanks!

5/19/2017 27


	Native OS Support for Persistent Memory with Regions
	Persistent Memory (PM)
	PM Challenges
	PM challenges: �THE Costs of Ordering
	PM Challenges:� Atomic Data Durability 
	PM Opportunities:�Shared Consistency
	PM opportunities:�Simple Memory-Like Transactions
	Applications Requirements For PM
	Contemporary Solutions
	Contemporary Solutions
	Region System
	Redefined OS Memory/Storage stack
	Architecture
	Consistency States
	Region System (RS) Interface
	Metadata operations
	Metadata operation comparison
	MAPPED DATA CONSISTENCY Challenges
	ATOMIC DURABILITY WITH PMSYNC
	Avoiding CoW propagation
	PMSYNC EXAMPLE
	PMSYNC COMPARISON WITH�EXT4-DAX
	Libpmem-region
	LIBPMEM comparisons
	LIBPMEM COMPARISONS
	Summary
	Questions?

