NATIVE OS SUPPORT FOR
PERSISTENT MEMORY WITH
REGIONS

Mohammad Chowdhury (mchow017@fiu.edu)

Raju Rangaswami (raju@cs.fiu.edu)

Florida International University

mailto:mchow017@fiu.edu

PERSISTENT MEMORY (PM)

*» Hybrid characteristics of memory and storage

Memory

Storage

e Volatile

 Non-volatile/Persistent

« Byte-addressable access

|- Fast

Read/Write
latency:
4X-10X

of memory

—

5/19/2017

 Block I/O access
 Slow

Persistent Memory

Non-Volatile/Persistent
Byte-addressable access
Fast

PM CHALLENGES

“* PM is directly accessible by CPU
% BUT ...

5/19/2017 3

PM CHALLENGES:
THE COSTS OF ORDERING

* Ordering requires cache line flushes, barriers, and
ADR (asynchronous DRAM refresh)

* Increased cost of operations
 More redundant metadata -> More ordering required
« GOAL—>

 Reduce ordering requirements

5/19/2017

PM CHALLENGES:
ATOMIC DATA DURABILITY

P

: PL) . P203) t\P3(x3) . P3(msync) Final
0 1 2 3

Version

Requirements:

1. Make data atomically durable (ALL or NONE)
2. Revert back to initial state in case of failure

5/19/2017 5

PM OPPORTUNITIES:
SHARED CONSISTENCY

NOVA ATOMIC MMAP

Private copy

Cache coherent visibility

Requirements:
1. Updates should be visible to all the shared processes
2. Should support atomic durability of all updates across a shared region

5/19/2017 6

PM OPPORTUNITIES:
SIMPLE MEMORY-LIKE TRANSACTIONS

Program A

Allocate persistent Obj1;
Allocate persistent Obj2;

Begin Transaction || & odrammers
: . 1. Must track
Objl opera.tlons all updates
End transaction to persistent
_ objects
Begin Transaction || 2. Must
Obj2 operations annotate
End transactions individual
transactions

Program B

A = mmap(PM);
Allocate objects Obj1,0bj2 from
mapped area

Operations involving Obj1, Obj2.
Sync() «

More Operations on both Obj1, Obj2
Sync() «

|

Programmers simply call Sync() to
persist all updates in a mapped area

5/19/2017

APPLICATIONS REQUIREMENTS FOR PM

Arbitrary &
Unordered
Allocation

Persistent

Namespace PM Based
Application

Consistent Simple
Sharing Memory Like
Support Transactions

5/19/2017 8

CONTEMPORARY SOLUTIONS

/" DAX File Systems) (Memory Subsystem) (Persistent Heaps
Mnemosyne
0S NV-Heaps

/" Regular File Sys.

i)

5/19/2017

/" Atomic Msync

/" Replication

- J

Mojim
RDMA

CONTEMPORARY SOLUTIONS

/ Region System \

o /

Q Arbitrary and Unordered Allocation Q Consistent Sharing Support

Q Simple Memory Like Transactions Q Mapped Data Consistency

Q Persistent Namespace Mapped Data Consistency (Partial)

N

5/19/2017 10

REGION SYSTEM

We present “Region System”, a kernel subsystem, to
support persistent memory to achieve the following
goals:

 Minimize unwanted latency in the persistent memory
access path;

e Provide users with direct and consistent access to
shared persistent memory; and

 Demonstrate modifications of the existing
applications for optimized usage.

5/19/2017 11

REDEFINED OS MEMORY/STORAGE
STACK

USER

KERNEL

APPLICATIONS
@ © ©
Memory library (POSIX) PM librancs FS library (POSIX)

| ' ' Virtual File System
|

Rest Virtuat - \ | .

of the Memory . Page Tablps 3 Region i nvinfs ex1stm/%%s (extd, nils, cic.)

emel @ B = i :] ‘ System | -~ Block Layer
DRAM PCM | | STTRAM | ReRAM --- @

NOT intended as replacement for File Systems or Memory Subsystem
RS should serve as a core “Persistent Memory Support System” usable
by applications, file systems, and other kernel subsystems.

5/19/2017 12

ARCHITECTURE

5/19/2017 13

CONSISTENCY STATES

0 0 No Ppage
0 y Invalid — There can not be a snapshot without current
X 0 Un-synced page, mapped to the address space

X ==Y, page in synced state

X 1=y, page in unsynced state, “y” is the consistent version

5/19/2017 14

REGION SYSTEM (RS) INTERFACE

Class System Call

region_d open (char region_name, flags f)

Namespace int close (region_d rd)
int delete (region_d rd)
ppage_no alloc_ppage (region_d rd)

Allocation - -
int free_ppage (region_d rd, ppage_no ppn)
vaddr pmmap(vaddr va, region_d rd, ppage_no, int
nbytes, flags f)

Mapping &

Consistency

int pmunmap(vaddr va)

pmsync(vaddr va)

5/19/2017

15

METADATA OPERATIONS

e Persistent Operations

» Modifies persistent metadata

« Volatile Operations

 No updates to persistent metadata

* Persistent operations are designed to achieve atomic
durability

5/19/2017 16

METADATA OPERATION COMPARISON

Persistent Operations

5/19/2017

1

Volatile Operations

17

MAPPED DATA CONSISTENCY
CHALLENGES

 Avoid Unwanted Durability

Applications want to make updates durable only updates
a msync() invocation.

 Updates are made durable in PM before a msync call.

In case of a failure, the mapped PM area will contain
uncommitted data.

 Protecting the Sync

e During sync operation no applications should be allowed

to write to mapped PM - difficult to achieve due to direct
CPU access.

5/19/2017 18

> W N

ATOMIC DURABILITY WITH PMSYNC

|dentify the dirty pages
Write protect the pages
Flush dirty cache lines

Copy-on-write protection for future writes to
a sync’ed page

5/19/2017

19

AVOIDING COW PROPAGATION

N [)
~~~~~~ — T
4 S
6 7 8
:
9 10

5/19/2017 20



PMSYNC EXAMPLE

PMSYNC A

7. PMSYNC_COMPLETE

\
Is_root

rnode: A

6. Change s y

E2 | E3 E6 [« | E7 | E8 | E9
A TTTTTTTTTTTTT '"‘:""""'"""""""'""T""""&t"* __________________________________________________________________________________
4. Flush Y
Cache lingé for

E2

jait for

2. Write
) 1

Protect
E2

IVoIatiIeI

5/19/2017 21



PMSYNC COMPARISON WITH

EXT4-DAX

dINSL' L
dINL
dINSC9

1
o0
>
ok
LN

1
e
>
LN
™
ﬂ-

dNY
dNSZ'E
dNS'Z
- GNSLT
dNT
aN9Sz

15000 —

10000 |
5000 -

0_

(srl) Aouaye

ion size

File/Reg

22

5/19/2017



LIBPMEM-REGION

Non-transactional pmem-flush
All or None policy does not work
A portion of the updates can be lost

QOutcome
1. Add atomic durability guarantee to libpmem
2. Reduce risk factor for libraries built on top of libopmem

5/19/2017

23



LIBPMEM COMPARISONS

0000000
2222222

0000000




Average Latency (microseconds)

1.00E+09

1.00E+08

1.00E+07

1.00E+06

5/19/2017

LIBPMEM COMPARISONS

——libpmem-region -*lipmem-DAX -*-libpmem

2560

4096

7168 13312 25600 50688 100864 200704

Number of Synced Pages

25



SUMMARY

 Region System Features

* Provides arbitrary and unordered allocation and de-
allocation

« Minimizes ordering requirements by eliminating
redundancy

 Provides transparent sharing and atomic durability of
mapped data with competitive performance

 Usable by File systems, Applications, Libraries, and
other kernel subsystems or modules.

e Source code will be made public soon!

5/19/2017 26



Thanks!

QUESTIONS?

5/19/2017

27



	Native OS Support for Persistent Memory with Regions
	Persistent Memory (PM)
	PM Challenges
	PM challenges: �THE Costs of Ordering
	PM Challenges:� Atomic Data Durability 
	PM Opportunities:�Shared Consistency
	PM opportunities:�Simple Memory-Like Transactions
	Applications Requirements For PM
	Contemporary Solutions
	Contemporary Solutions
	Region System
	Redefined OS Memory/Storage stack
	Architecture
	Consistency States
	Region System (RS) Interface
	Metadata operations
	Metadata operation comparison
	MAPPED DATA CONSISTENCY Challenges
	ATOMIC DURABILITY WITH PMSYNC
	Avoiding CoW propagation
	PMSYNC EXAMPLE
	PMSYNC COMPARISON WITH�EXT4-DAX
	Libpmem-region
	LIBPMEM comparisons
	LIBPMEM COMPARISONS
	Summary
	Questions?

