Experience from Two Years of Visualizing Flash
with SSDPlayer

Gala Yadgar and Roman Shor
Computer Science Department, Technion
Email: {gala,shromah@cs.technion.ac.il

Abstract—Data visualization is a thriving field of computer trigger the creation of replicas or other forms of redundancy.
science, with widespread impact on diverse scientific disciplines, \jisualization is a natural technique for understanding the
from medicine and meteorology to visual data mining. Advances effects and implications of these processes. In this paper, we

in large scale storage systems, as well as low level storage techf flash b d stor ne examble of th molexit
nology, played a significant role in accelerating the applicability OCus on Tlash based storage as one example of the complexity

and adoption of modern visualization techniques. Ironically, the Of modern storage architectures.

cobbler's children have no shoes” researchers who wish to Data on flash devices moves to a different location whenever
analyze storage systems and devices are usually limited to ajt ijs updated: the data is written again on a clean page, and
variety of static histograms and basic displays. the previous data location is marked as invalid. Thesh

The dynamic nature of data movement on flash has motivated
the introduction of SSDPlayer, a graphical tool for visualizing translation layer (FTL)is responsible for mapping logical

the various processes that cause data movement on SSDs. |rfidc_lres_ses to physical pages. Tderbage CO”?CtiOTPVOCGS_S
2015, we used the initial version of SSDPlayer to demonstrate maintains a pool of clean blocks by occasionally erasing a

how visualization can assist researchers and developers in their plock with mostly invalid pages after copying its valid pages

””deertagdi“g of ”?Sosdgg‘l' Comflex ﬂalsh-_based systems. V]Yh”e d""_eto another available block. These internal writes are another
continued to use ayer for analysis purposes, we found it .
extremely useful for education and presentation purposes as well. cause for data movement throughout the device.

In this paper, we describe our experience from two years of using, ~Many FTL optimizations incur additional internal data
sharing, and extending SSDPlayer, and how similar techniqgues movement. Examples include wear leveling [7], merging of
can further advance storage systems research and education. |og blocks [8], partition resizing [9], and parity updates [10].
Quantifying these additional writes is important for analyzing
the effect of such optimizations on the performance and
Data visualization refers to applying meaningful geometrigurability of the flash device. However, doing so is not always
or visual encoding to otherwise “non-visual” data, and is theivial and requires a deep understanding of the interacting
focus of numerous academic studies and commercial praduses of data movement within each device.
ucts [1]-[6]. Early visualization techniques, such as statistical Currently available simulators [7], [11] output internal state
maps, scatter plots, and histograms, still form the basis arfid statistics in the form of lists, tables and histograms, from
fundamental research and presentation tools. However, tealirich deriving internal processes is cumbersome and requires
nological advances and new techniques allow researchersigreat deal of skill and imagination. Basic hardware evalua-
many disciplines to use increasingly powerful tools to visualizéon boards [12] provide similar output, while advanced ones
large scale and complex data. Special attention is given to fw@vide graph output of block level reliability tests [13]. SSD
ability to dynamically control the way data is displayed, byptimization tools provide fragmentation information [14],
interactive zooming, filtering, distortion and aggregation. S.M.A.R.T statistics and block update frequency [15]. How-
Ironically, the analysis of the systems and architectures theter, complicated flash processes cannot be understood from
facilitate these advances is still limited to basic visualizatiathese aggregated statistics. Furthermore, these tools are in-
in the form of many types of graphs and histograms. In thiended for off-the-shelf SSDs, and cannot be used for research
context, analyzing the state of the data within storage systeprstotypes.
and devices is especially difficult: the illustration of data se- The increasing complexity of state-of-the-art flash man-
guentiality on hard drives using various defragmentation toadgement motivated us to introduce data visualization princi-
is just about the only well-known example. Unfortunatelyples to storage systems research and analysis. We developed
this static representation does not capture some of the meg@DPlayeran open source graphical tool for visualizing data
phenomena in modern storage systems. layout and movement on flash devices, and presented its
Storage systems are designed to dynamically adjust ibdtial version in the 7th USENIX Workshop on Hot Topics in
changing workload characteristics and system conditiortorage and File Systems (HotStorage '15) [16]. The feedback
Thus, data may migrate between storage nodes for load received from the workshop attendees, as well as from our
balancing, or between storage hierarchies according to dtslleagues, inspired us to extend the interactive features in
popularity. Background deduplication may eliminate logic&SDPlayer and the complexity of the devices it can display.
copies of data, while changing availability requirements mdy also encouraged our use of SSDPlayer for educational

I. INTRODUCTION

chip extended to process different trace formats. Alternatively,
oo synthetic access distributions can be added by extending the
. % workload generator. The basic histograms can be extended to
.. page display additional aggregated statistics.
Our goal of keeping SSDPlayer as simple and easily

(ETL_v](input v] &I (0] —gmeme extendible as possible led to several design choices. Most
Valid Histogram ~Write Amplification of the complexity of full scale simulators is due to accu-

rate performance modeling that takes into account numerous

L | T device-specific parameters. Thus, we implemented SSDPlayer
Fig. 1. SSDPIlayer display (simplified) from scratch, focusing on write-only workloads, and only on

the way data moves, regardless of how much time it takes.
Hoyvever, it can be extended to provide performance analysis

presentation of new ideas and designs in academic confdy-adding delays_ during time-cor)suming operations.sych as
ences and industrial collaboration meetings. In this paper, EASUres and copies, or by collecting the relevant statistics and

describe our experience from two years of visualization, abl%esentlrllg them as a hlstograrg or affmal output f|Ie|. _
with our insights into how it can advance storage system>>PPIayer supports two modes of operationsimulation
research. mode, it simulates the chosen FTL on a raw /O trace or on

The rest of this paper is organized as follows. We i ;yqthetic v_vork.load, iI_Iustrating the SSD_ state afc each step.
THIS illustration is continuous, thus forming a “clip” of the

troduce the basic features and structure of SSDPlayer |j h ke ol duri . hi d
Section II. We then take a close look at several use cases & movements_t at take p ace auring execution. T IS mode
useful for testing and analyzing various features without,

demonstrate the different aspects of visualization in storage bef imol) h . full le simul
system analysis. Section Ill describes our experience fr efore, implementing them in a full scale simulator or

using SSDPlayer for educational purposes. In Section ﬁ\yyardware platf_orm.) ,
we describe our experience from presenting complex idead" visualizationmode, SSDPlayer illustrates operations that

and designs. Section V describes some of the feedback %re_performeq on an upstream simulator or device. The input
|Hdth|s mode is an output trace generated by a simulator,

received from colleagues and conference participants ; .
how this feedback was incorporated into the new versionah?rdware evaluation platiorm, or a host level FTL, describing

SSDPlayer. We describe some of our research experience Vit P2SIC Iopgrarions that werﬁ pgrfolrlmed on thehflash de;)/:cek—
SSDPIlayer in Section VI, and provide additional notes to usepditing a ogical page t.o a pnysica .ocatlop, changing bloc

and developers in Section VII. We discuss related work Sate, etc. This mode is useful for illustrating processes that
visualization in Section VIII, and conclude in Section [x oceur in complex research and production systems, without

Throughout this paper, we refer the reader to one-minLﬁ?Qrting their entire set of features into SSDPlayer. We demon-

clips that were generated with SSDPlayer for demonstratigiate the benefit of this mode in Section IV. - _
purposes and are available on the SSDPlayer wébsite ' e SSDPlayer display, depicted in Figure 1, is organized
into chips, planes, blocks and pages, as specified by the user

1. SSDR.AYER at startup. Colors and textures are used to represent page and

SSDPlayer is an open source project. Thanks to its flexigfPck properties, such as data ‘temperature’ or valid page
structure, a wide range of functionalities can be added §§unt- A page’s properties and state determine its fill color,
it in a straightforward manner. These include many recenfi§Xture, and frame color. A block's properties determine its
suggested FTL optimizations, including wear leveling, padéckground and frame colors. Note that the page and block
mapping, and garbage collection algorithms. Users can eadlfpPerties need not necessarily match. Aggregated informa-
modify the graphical parameters to visualize the concepign such as write amplification is displayed in continuously
they are interested in and display the details and statistidadated histograms, illustrating how the device’s state changes

relevant to their analysis. We describe several such scenaR¥8" time. _
and additions in the following sections. There is a tradeoff between the complexity and number

We implemented SSDPlayer in Java in order to maximi& details displayed, and how easily the visualized processes
portability and minimize platform-specific dependencies. fan Pe identified and interpreted. Thus, while there is no
is designed to provide the most general SSD functionalil”)‘EStr_'Ct'O” on the complexity of the FTL schemes |mplem_ented
in order to allow easy extensions and additions for a wid&thin SSDPlayer, users must carefully choose the size of
range of capabilities. The basic flash components — e.g., pag@, visualized device and which page and block attributes to
block, page mapping and garbage collection — are implementigPlay- _ _
as abstract classes that can be extended according to tHeOr demonstration purposes, we normally use a ‘toy’ device
desired FTL functionality. The simulation and visualizatio®’ 2K pages. A device of up to 12K pages can be viewed

components are similarly flexible: the trace parser can Hefull detail on a regular HDTV screen. SSDPlayer handles
larger devices of more than 250K pages by adjusting the level

Lhttp://ssdplayer.cswp.cs.technion.ac.il/ of detail presented. A subset of the device’s planes or chips

purposes in undergraduate courses and projects, and for

http://ssdplayer.cswp.cs.technion.ac.il/

can be viewed in full detail while the simulation continues (@) Uniform D R T
to update the state of the entire device. Alternatively, the Valid count =11 b od S
entire device can be viewed by omitting fill texture and by Erase count =18

aggregating the presentation of an entire block’s pages into one

smaller rectangle. SSDPlayer allows to dynamically zoom-in (b) Zipf
and zoom-out between several levels of detail and different Valid count =18
aggregation criteria. We describe this option in greater detail Erase count =21
in Section V.

Fig. 2. Close-up of one block at the end of ti&reedy-Uniform(a)

I1l. AN EDUCATION USE CASE WRITE AMPLIFICATION andthe Greedy-Zipf(b) demos. The pages that were copied to a clean

e oriinally used SSDPlayer (0 lustate data movemelife A1 PLeEus cahage Sojecions e fled ity & ncckere
with uniform workloads, where it is well-understood, and tQaqits in a higher valid count and more erasures.
show how a visual illustration can shed some light on the
non-uniform case, where data movement is complex and not))]]
fully understood. In the process of generating the respectiven the Greedy-Uniformdemo, this basic FTL is executed
demos, we identified their potential for illustrating even th@ith a small SSD and a uniform random workload. This clip
basic concepts of garbage collection and write amplificatiGows that shortly after the SSD's logical capacity is filled and
for students who are encountering them for the first time. @frbage collection beginblinValid stabilizes at 10-11 pages.
this section, we describe these concepts and our experiehb& Portion of each block that is taken up by valid pages
in using SSDPlayer to illustrate them in the context of undeif@nsferred at garbage collection is clearly visible thanks to
graduate courses and projects. their different pattern.

SSD basic design conceptslpdates in SSDs are performed We use the same SSD and FTL with a Zipf workload. The
out-of-place: the previous data location is marked as invaligreedy-Zipfdemo shows thatlinValid converges more slowly
and the data is written again on a clean page. To accommociité at a higher value of 15-16 pages. The reason is that cold
these writes, some physical storage capacity is not include@ges that are rarely updated remain valid during consecutive
in the device's exported logical capacity. Thus, the devicedrbage collection invocations. As a result, write amplification
overprovisionings defined asT—TU, whereT andU represent increases, leaving less space available in the erased blocks for
the number of physical and logical blocks, respectively [17]valid copies of hot pages, thus causing even more frequent
The FTL is responsible for mapping logical addresses @®rbage collection, and so on. This phenomenon is graphically
physical pages. visible as a dense groupingiofzalid (X) marks on the plainly

The garbage collection process is invoked whenever tfiked pages that represent user writes. Figure 2 illustrates this
number of clean blocks drops below a certain threshol@r one block.

Garbage collection is typically performedeedily, pickingthe ~ The Greedy-Sequentialemo is designed to show the best-
block with the minimumvalid count (the lowest number of ca® scenario of garbage collection and write amplification.
valid pages) as the victim forleaning The valid pages are With a completely sequential workload, the demo shows
moved—read and copied to another available block, and thépat MinValid is always zero and the write amplification is
the block is erased. These additional internal writes, referredatyvays one, and that garbage collection does not generate any
aswrite amplification delay the cleaning process, and requiré)ternal writes. This is a trivial result in terms of workload
eventually, additional erasures. and performance analysis, but is not completely obvious to

The most accurate formula for estimating the write amplgtudents who encounter these concepts for the first time.
fication with greedy garbage collection as a function of pageWe now use these demos regularly in an undergraduate
size and overprovisioning is that of Bux and lliadis [18]. Thegourse on storage systems, where their contribution is twofold.
derive the formula from a detailed analysis of the number &frst, explaining data movement and its effects while referring
blocks with each valid count, and show that with a randofe an “animated” example that can be paused or rewinded is
uniform workload, the minimum valueMinValid) converges much easier for an instructor than appealing to the students’
to a single value or to two consecutive values. Desnoyers [lifjagination or constructing a complex series of individual
performs a similar analysis which results in a formula whichlides. Second, as students assimilate the new concepts much
is less accurate but can be calculated more easily. faster, they often raise issues that are beyond basic design

lllustration with SSDPlayer. The Greedy FTL in principles, such as wear leveling and possible optimizations
SSDPlayer implements greedy garbage collection within eaehgreedy garbage collection. Thus, visualization helps us use
plane, and a page allocation scheme that balances the nuntigrlimited teaching hours more effectively, and to generate
of valid pages between planes. All pages have the same cotliscussion and interest in advanced related topics.
but the page fill changes to a checkered pattern if it has beeHands-on experience with SSDPlayer~or students who
copied to a new block during garbage collection. Invalid pagese interested in storage system design, we leverage the
are crossed out, but maintain their fill color and pattern unfiexible design of SSDPlayer to serve as a basis for undergrad-
they are erased. uate projects. In these projects, students typically read some

http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-uniform/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-uniform/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedysequential/

background on SSD design challenges [7], [10], and then delvwedium—after its cells argprogrammedto increase their
into the details of implementing additional FTLs or featuregoltage level, they must be erased prior to writing again. This
within SSDPlayer. These projects have been very successtanstraint motivates the use of out-of-place updates in SSDs,
and their products have been merged into the new versionvdiich incur additional internal writes and erasures.
the tool. Reusable SSD reduces the number of erasures by perform-
For example, one pair of students added the possibilityg additional writes on a block before it is erased. To perform
to define breakpoint rules within the player, stopping th& second write, the logical page written by the user is encoded
simulation whenever a predetermined condition holds. In thth a special encoder that adds redundancy bits, producing an
course of this project, they had to identify interesting eventsutput that is twice the page size and can be written on a pair
that could be triggers for analysis or debugging purposesf, physical pages that have already been programmed. The
such as the first invocation of garbage collection in a certa@gmcoder guarantees that writing the new data will only require
plane or chip, or the first time the valid count or writdncreasing the cell voltage level, thus complying with standard
amplification reach a certain value. Other projects’ goalfiash programming constraints. This condition is sufficient to
such as displaying an info screen when the simulation aflow reuse of SLC flash pages. We thus refer to this scenario
paused, or dynamically switching between different zooms “ideal” page reuse.
levels, required students to identify meaningful aggregationAdditional limitations apply to the reuse of MLC flash
metrics and possible inconsistencies between different FTlgages, as a result of specific optimizations applied during
The RAID functionality, discussed in Section VI, was alspMLC page programming. Page reuse is still possible, but
implemented as part of an undergraduate project. This projeahnot utilize all the block’s pages for two writes [20]. One
required a deep understanding of the different RAID levelpossible pattern for page reuse is the low-low-high (LLH)
the challenges in parity updates, and how they differ in SSIdgprogramming scheme [21], in which blocks are programmed
and in hard drives. in two rounds. In the first round, only the low pages are
SSDPlayer has become an integral part of our educatiopabgrammed as first writes. The second round takes place after
tool box, where visualization is the fundamental contributonost of these pages have been invalidated, and consists of
to its success. Entry-level students benefit from our ability srogramming the unused (high) pages for the first time, and
clearly illustrate basic design concepts. Students who cho@eprogramming the invalidated low pages as second writes.
to specialize in the subject benefit from a simplified framework The commonly used formula for write amplification cannot
that can be easily extended. More importantly, SSDPlaygé used when additional writes are performed before the block
showsthem what is going on inside the device. This helps the@ erased. The derivation in [18] and [17] does not extend
understand the consequences of their design choices, anditigRilly to this case, because the number of additional writes
their time effectively. We believe that visualization can helghat can be performed depends on the way invalid pages or
in a similar manner when teaching subjects such as cadiire blocks are reused. In fact, since some redundancy must
replacement, paging, dynamic memory allocation, and largvays be added to the logical data to enable second writes,
cluster management, where data continuously moves from qRe conventional definition of write amplification does not
place to another. accurately represent flash utilization in this context. Several
models, with varying degrees of complexity, were suggested
for analyzing the properties of second writes in various de-
We originally used SSDPIlayer to demonstrate the advantaggns [22]-[24]. We use SSDPlayer to show how a graphical
of visualization in the analysis of data movement in complgkystration can provide important insights into such complex
FTL designs, such aReusable SS[L9], which reuses flash designs.
pages for additionalsecong writes before they are erased. presentation with SSDPlayer.The ReusableFTL imple-
The demo videos we generated turned out to be a valuaRignts ideal second writes in SSDPlayer. Each block is first
tool in presenting this and subsequent research results, bgtiten normally by first writes. When it is chosen as victim for
to an academic audience in conferences and to practitionggshage collection, it is either erasedrecycled— allocated
within industry collaborations. In this section, we explain thgyr second writes without erasdreUpon receiving a write
basic challenges in reusing flash pages, and show how we uggghmand, if a recycled block is available, a second write is
SSDPlayer to visualize our approach. performed on a pair of physical pages in the recycled block
Flash page reuseFlash pages are composed of floatingyhose data has been invalidated.
gate cells, whose voltage levels represent different bit vaIuesPages are colored according to the write level of their logical
Single-level flash cells (SLC) can store a single bit valu%age_ When a page is copied to a new block before erasure
1 (initially) or 0. Multi-level flash cells (MLC) support four (gych copies are always performed as first writes), it maintains
voltage levels, mapped to four two-bit values: 11 (in the initighe color of itsoriginal write level, but changes its texture to

state), 01, 00 or 10. In MLC flash, the MSBigh) and the hat of an internal write. Thus, the different colors represent
LSB (low) bits represented by the cell are each mapped to a

diﬁe_rem flash page. Thus, MLC_ﬂaSh blOCkS. are Co_mpose‘iThe detailed conditions for block recycling are specified by the Reusable
of high and low pages, respectively. Flash is a write-on@sD design [19].

IV. A PRESENTATION USE CASEREPROGRAMMING

logging mechanism to the implementation in DiskSim, which
logs all physical write commands, garbage collection pro-
cedures, and state changes to a trace file. In the online
ParallelReusable-Zipfand ParallelReusable-MSRemos, we

use this trace file as input to SSDPlayer in visualization
mode to visualize the complex data movement in the full
Reusable SSD design with Zipf and real workloads [25], [26],
respectively. We used this demo for presenting Reusable SSD
at conferences, where it was especially useful for illustrating
how all our design choices were combined within a complete
FTL implementation.

Visualization of LLH-FTL. LLH-FTL (Low-Low-High Re-
programming FTL)is a full FTL design that emerged from
Fig. 3. Reuse process of one block in théH-FTL-MSR demo. our detailed research Or,] MLC flash page reuse [20]. TO
When the block is allocated for future reuse, its state is chang@$commodate second writes, LLH-FTL reserves some of its
to PartiallyUsed (a) and only its low pages are programmed (greehjocks in apartially-usedstate where only their low pages are

When most of these pages are invalid, the block is allocated fgsed. A partially-used block can be reused, in which case the

reuse. Its state changes to Reused (b), its invalid low pages L will reoroaram all or some of the low pages and all the
reprogrammed (blue), and its high pages are programmed for the ffi"P brog hag

[. .
time. The position of low and high pages in this block represents thé‘\féh pages. The r?‘%mber of partially-used blocks 'S_ controlled
layout in the OpenSSD hardware. by a set of conditions that balance reuse potential and the

availability of overprovisioned space. To dynamically adjust
e@eir number, the FTL can forego recycling of a partially-used
elg}ock, and instead program the high pages and leave the low

(a)
State=PartiallyUsed

(®)
State=Reused

the portion of the data written in first and second writ
within both user and internal writes. In addition, we replac hed until the block i q
the write amplification histogram with one showimhapical pages untouched until the block is erased.

writes per erasureWith N pages per block and first writes TCI)_ur reseaorch cggs[;sted of a tf)ull |(rjnpllszentatloln OT LLC\’/
only, N logical writes per erasure are equivalent to a writg 1L on the Open Jasmine board [12] for evaluation. We

amplification of 1. With second writesy x 1.5 logical writes /S0 used an adaptation of this FTL implementation as an

per erasure are the maximum value achievable when all pagg%ulator for evaluating the effect of additional parameters that

are fully utilized for two writes, with no internal writes. ould not be modified on the hardware platform. We added a

In the Reusabledemo. we run the Reusable ETL on Aogging mechanism to this emulator that produced a similar
smdl SSD with N=32 a,nd a Zipf workload. It shows thatoutput as the log of DiskSim described above, and we used

most of the pages are utilized for two writes, but that marf{}iS OutPut to generate thd H-FTL-MSRdemo. The lifecycle
of the logical pages written as second writes (blue) are s i r_eused_ blocks is clearly illustrated: the high pages remain
valid when the block is erased and must be copied to'{lite While they are partially used. The low, used (green)
clean block (checkered). This means that pages written withdl#9es are then reused and turn blue, while the clean (white)

prior erasure of the block end up occupying newly erasaﬁ?‘ges are used for the first time. Figure 3 zooms in on one

blocks when they are copied, reducing the benefit from secodgck during this process.
writes. Indeed, only 26 logical writes (out aWVx1.5=48 We used this demo to illustrate LLH-FTL at the conference

possible) are performed per erasure. Although this is mofgiere it was first presented. In subsequent, longer talks,
than the 17 writes per erasure achieved with first writes niy’e Played both this demo and that of Reusable SSD, to
flash utilization can clearly improve. We used this demo famPhasize the difference between ideal and practical page

a graduate course on coding theory, to illustrate the desigif'Se in real systems. Thus, our presentation consisted of a

challenges of performing additional writes and to motivatdsudlization of the same workload (the pmvolume from
a theoretical model for analyzing and optimizing garbagd® MSR Cambridge collection [25], [26]) handled by two
collection in this context. ifferent FTL designs implemented on two different platforms.

Visualization of Reusable SSDThe full Reusable SSD This visualization complemented our theoretical analysis and
design is much more complex. It performs second Writgé/all_Jat_ion results, by illustrating the applicability as well as
in parallel to blocks in different planes, identifies cold dat{'€ limitations of our research results. _
without external tagging, and handles encoding failures and>SPPlayer has proved a powerful tool for presenting com-

mapping constraints [19]. The implications of Reusable SIP¢* ideas and designs to expert audiences in advanced

for device lifetime and performance have been thoroughﬁ?”rses' academic conferences, and collaborations with the

evaluated by a detailed implementation in DiskSim [7]. ndustry. In this context, too, explaining the details of a
We took advantage of this implementation to illustratEOMPIex design is much easier when a visualization of its

the full Reusable SSD design in SSDPlayer. We addedyl implementation is pla_ying _in the background. This allows
us to use our presentation time effectively and engage our

3This value is derived fronMinValid=15 in the Greedy-Zipf demo. audience, who, in turn, can easily follow the details of our

http://ssdplayer.cswp.cs.technion.ac.il/demos/llh-ftl-msr/
http://ssdplayer.cswp.cs.technion.ac.il/demos/reusable/
http://ssdplayer.cswp.cs.technion.ac.il/demos/parallelreusable-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/parallelreusable-msr/
http://ssdplayer.cswp.cs.technion.ac.il/demos/llh-ftl-msr/

@
Valid count =3
Erase count =(

(b)
Valid count =10}
Erase count =2

(©) 2 e i
Valid count =1 ity | a6l o]
Erase count =14 Average block temperature:
m s P 1 _ 10

Fig. 4. Close-up of one block during thdotCold-1demo with a Zipf . L
workload, tagged with 10 temperature ranges, where red (1) is tg'g' 5. Zoom-out view of a 32K-page device in tharge-HotCold-5

hottest and blue (10) is the coldest. The valid count is shown at HEMO: Aggregate information is displayed by coloring each koloc

time when the block is chosen for the next erasure, where it is qugf:ordlng to the average temperature of its pages.

to MinValid. The MinValid pages that were copied to a clean block

during previous garbage collections (checkered pattern) are from the ition. Each plane haB active blocks, on which pages of

coldest temperature ranges. This demo shows their portion increa |ri1i%h rtition are written. When an active block is full. a new

until it stabilizes at roughly half the block size. € pa O, are en. _e a _E_lc € block s 1ufl, a ne
clean block is allocated for this partition. Greedy garbage col-
lection is used, determining partition sizes implicitly according

design. These benefits of visualization can also be gained BYiho humber of writes with each temperature.

de\éelopers. alnd distributers in their interaction with existing ;¢\ ajization with SSDPlayer. As a reference point, we
and potential customers. first run theHotCold FTL with one partition and a Zipf work-
V. A FEEDBACK USE CASE HANDLING LARGE DEVICEs load where requests are tagged with ten different temperatures.

The HotCold-1demo is essentially a replay of the demonstra-

. \éVggg?maII); usﬁd cor:ors tq rerl)res_ent |Ioa%e acceis lfre(qlug& in the Greedy-Zipfdemo (Figure 4 shows snapshots of
n ayer to snow how simple visual aids can help clariy g ot piock in the device during this demo). It shows how

not only how data moves, but also why it moves. Wheg imple addition of colors can facilitate our understanding of

presenting our demos, we received valuable feedback q § process described in Section IlI: before garbage collection

advice on how to extend this concept to additional attribute&arts, the red pages, which belong to the top five temperatures

realistic device sizes, and additional architectures and domai Sid only 2% of the data), occupy roughly half of each block
In this section, we demonstrate the benefit from using COIogpresenting their portior!] of accesses in the trace. As th’e

in analyzing workloads and SSD performance, and how t %rbage collection process advances, blue (cold) checkered

{ﬁig%agg;{gz the community helped us improve SSDI:)I""y%cropied) pages occupy increasing portions of each block, most

. : of them remaining valid until the next garbage collection on
Hot and cold data separation. Separating hot and coIdthiS block g 9 9

data has been shown to reduce write amplification and, re
spectively, garbage collection costs and cell wear [9], [27].
De?_noyersf [,i?] anall(3|/ze§ cases 'T] which th: h?[:] %n# CY8ause within each partition, pages are still accessed with a
portions ot the workload are each accessed wi ! .erel%latively high skew. However, this behavior changes when
uniform distributions, showing that separating them to differ-

. . . - ~we define five partitions, one for every two temperatures.
ent partitions with greedy garbage collection results in tf}g b y P

same write amplification as in the uniform case. Stoica a é)r this trace, this granularity is fine enough to reduce the
. . P . ' 'Wew in the cold partitions, so that garbage collection within
Ailamaki [9] analyze a workload with sever&mperatures

Thev show that several temperatures can be arouned into ach partition behaves as with a uniform workload. Indeed,
y show Sev peratures grouped Into 1§, e HotCold-5 demo, MinValid stabilizes at 10-11 pages

same partition without increasing the write amplification, Ace in the Greedy-Uniformdemo. This process, described by
long as the skew within each partition does not exceed a cert@n : '

. :) eqioyers [27], is seen clearly in the demo.
degree. The conclusions of both studies are based on a ”gorm\?isualizing large scale devicesThe design of SSDPlayer
analysis of data movement processes.

had to address the tradeoff between the level of detail pre-

The .HOtCOld. '.:TL |mplen_1ented n SSDPlayer sepgrateggmed and the size (measured in number of pages) of the
pages into partitions according to their temperature. It is US§&vice that can be clearly visualized. In the initial version of

with traces in which each input write request is tagged by . .
temperature tgg The user specifies the number of partitions DPlayer, users could turn off the display of logical page

. nymbers and per-block counters, which allowed them to view
P, and the highest temperature of pages that belong to e%((%ah/ices of up to 20K pages with reasonable clarity. However,

4SSDPlayer does not currently implement online temperature classificatiéRiS OPtion had to be specified at startup, and consisted mainly
This functionality can be added by extending the HotCold FTL. of minimizing the pages without modifying their displayed

‘When we separate the data into two or three partitions,
observe a process similar to that in tHetCold-1demao,

http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/large-hotcold-5/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-5/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-uniform/

attributes. heterogenous storage hierarchies of RAM and flash, cache
A valuable piece of advice we received when presentirgyganization [30], [31], log structured file systems, shingled
SSDPIlayer was to handle large devices by “zooming outhagnetic recording [32], and the interaction between file
aggregating the information per block instead of just reducirsystems or databases and their underlying storage. Some of
page size. Thus, instead of blocks being presented adhase extensions are part of our future work. We are even aware
collection of pages, they can be presented as solid objeadban ongoing project, inspired by SSDPlayer, of visualizing
whose color represents the aggregate value of one of Haisfiability of clauses and derived conditions during long
pages’ attributes. In the current SSDPlayer version, users executions of SAT solvers [33]. We believe that complicated
pause the simulation, adjust the level of detail presented phenomena can be identified and analyzed in many domains
the screen, and specify the attributes they wish to view. Soméhin computer science and specifically in systems research,
of these attributes are common to all FTLs, such as the vaéd visualization becomes a standard research tool.
count or blockage—the number of times it has been erased.
Others are available only for specific FTLs, such as the averagg/|. A RESEARCH USE CASERAID PARITY OVERHEAD
temperature of pages in the HotCold FTL, or average write
level in the Reusable FTL. This addition makes it possible to The increase in SSD capacity, with the shift from SLC to
view devices with over 250K pages, and observe phenoméikC and TLC flash, comes at the cost of reduced reliability.
that could not be easily discerned in smaller devices or partfid increasingly common approach to compensate for the
visualization of large devices. reduced reliability is to organize data in RAID stripes, either
The onlineLarge-HotCold-5demo shows how zooming outWithin an array of SSDs [34]-[36] or within the chips of a
helps analyze a device with 32K pages. The input is a Zigingle SSD [10], [37]. However, the frequent parity updates
workload with the same parameters used in HmCold-5 required in these architectures increase the write amplification
demo @=1), where pages from every two temperatures afd device wear. Thus, understanding the data movement
stored in a separate partition. The first zoom level showgocesses caused by these additional updates is crucial for
entire pages, as in the previous demos, illustrating the differ&@y@luating the overall contribution of RAID to SSD reliability.
speeds in which pages of different temperatures are invdli-this section, we describe the basic challenges of RAID in
dated. The second zoom level omits the page numbers &Ds, and how they are visualized within SSDPlayer. We
block counters from the display, providing a detailed view of #hen describe our insights from visualizing several common
larger portion of the device. In the last two zoom levels, whicBcenarios.
differ in the size of the blocks presented, pages are omittedRAID in SSDs. In traditional RAID architectures, designed
altogether and blocks are colored according to an aggregttean array of hard drives, interleaved parities help minimize
metric. the overheads of reading old parity values and writing the
In this demo, blocks are colored according to the averagpdated values. However, flash based architectures must also
temperature of their pages so that the simulation continuggnsider theparity update overheadthe additional flash
to show how the allocation of blocks to partitions convergewrites caused by parity updates. The parity overhead is defined
Figure 5 shows a snapshot of the SSDPlayer display at th’SPJFLD, where P and D are the number of parity and data
zoom level. At the end of the demo, we switch the colgvages written, respectively [10]. The parity update overhead
scheme to represent block age, in order to show the casedepends on the size of the write requests (larger requests
wear leveling—blocks that are allocated to the hot partition arequire less parity updates), and on the amount of parity
erased repeatedly, while blocks storing cold pages are rarpges that are copied to new blocks during garbage collection.
erased, and stay “young”. Commercial RAID architectures that are applied to arrays of
We note that this phenomenon was not as obvious wiiSDs minimize the parity update overhead by only writing
the same distribution on a small device. When the number @ftire stripes to flash [35], [36].
logical pages is small, the “long tail” of the Zipf distribution is RAID can also be employed within a single SSD, where
not long enough—the cold pages are accessed less frequetiéiia is striped across separate chips and protected by one
than the hot pages, but frequently enough to generate somnemore parity pages in each stripe. In these architectures,
data movement in the cold partitions. Thus, the uneven wahe RAID functionality is embedded into the FTL, which is
is less pronounced. Uneven wear can still be demonstratedponsible for updating the parity whenever data is written.
with a small device, but doing so requires a more extrengeveral optimizations have been suggested for minimizing
access distribution as input. the parity update overhead in these architectures. Examples
The intuitive nature of visualization is a key factor ininclude write buffering of parity pages [38], adapting stripe
receiving valuable feedback from the community. Our exsize to device age [39], and “elastically” mapping data and
perience is that when researchers are first presented waitrity to stripes of flexible size [10]. The storage and update
SSDPlayer, ideas on extending or applying it to their own areaerhead of parity pages motivated these optimizations. We are
of interest immediately come to mind. Notable suggestioffisrther interested in how parity updates affect the efficiency
we have received include applying our visualization techniqué the garbage collection process, and how their overhead is
to large pools of RAM [28], content defined storage [29Rffected by it.

http://ssdplayer.cswp.cs.technion.ac.il/demos/large-hotcold-5/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-5/

Chip 0 Chip 1 Chip 2 them. Thus, the_y are more likely to_be valid and copied d_uring
garbage collegtlon. As aresult, .panty pages are responsible f(_)r
a smaller portion of internal writes than data pages, and their
Fig. 6. Toy example of RAID-5-FTL and a device of three chipd/pdate overhead decreases as the write amplification increases.
and four pages per block. Logical pages 0-5 (gray) were writtehhe space occupied by the data and parity of the hottest stripes
in consecutive requests, each generating a parity (turquoise) updgigcreases with each garbage collection invocation. We also
Stripe 0 is highlighted by a red page frame, showing the logical pagege ~at the end of the simulation, that the space occupied by
that belong to it, and both the valid and invalid copies of the parlt\ya"d and invalid parity pages consists of roughly 25% of the
page. . . 2 -
device’s capacity. This is twice the storage overhead expected
in a RAID-5 architecture with eight nodes, which is 12.5%.
Visualizing RAID in SSDPlayer. RAID is implemented This demo illustrates a phenomenon similar to the one
within SSDPlayer in three different FTLs, corresponding téhown in theHotCold-1 demo, where the cold pages are
the most commonly used RAID architecturé®AID-1-FTL repeatedly copied during garbage collection, generating ex-
implements mirroring: chips are divided into pairs and data #essive internal writes. Our extension of the RAID-5 FTL
one chip in the pair is replicated on the othRAID-5-FTL was a natural next step following the identification of the
implements one parity for every stripe. The parity position isame process in two different architectures. R#¢D-5+FTL
interleaved, so that different chips store the parity of differegiinimizes the effect of parity updates on write amplification
stripes.RAID-6-FTLimplements two parity pages per stripepy writing data and parity pages in two separate partitions.
When a logical page is written, the RAID FTLs are responsibighis can be viewed as a special case of separating hot and
for updating the parity (or parities) of the stripe this paggold data, where the FTL is aware of the “hotness” of the
belongs to. If a write request includes several pages in tbarity pages. In th&®AID-5-SeparateParitgemo, we run the
same stripe, the parity of this stripe is updated only onc&ane trace on the same device with the RAID-5+ FTL. This
Parity and data pages have different colors, which makesgémo shows that the space occupied by parity pages converges
easy to distinguish between them when they are first writte, 149%, which is only slightly higher than the expected 12.5%.
and when they are copied during garbage collection. Exy@ a result, the parity update overhead remains alrjostt
reads of old parity pages are not visualized by SSDPlaygie write amplification is lower (1.75 instead of 1.9).
which is designed to visualize data movement. Similarly, the The RAID-5+ FTL is not intended to be a full FTL design.
encoding scheme which determines the content of the paritile benefit from separating data and parity pages depends
pages is orthogonal to this analysis and is not implemente@dn the size of requests, the skew in the data itself, and on
The parity update overhead is displayed in a continuomgditional optimizations such as write buffering. Nevertheless,
histogram next to the one showing the write amplificatiomur experience of using it within SSDPlayer, on a variety of
making it easy to compare the two measures. Another imevice sizes and workload distributions, resulted in valuable
portant feature istripe highlighting when the simulation is insight into the interaction between parity update overhead
paused, users may specify a stripe they wish to follow closeynd write amplification. This insight was a significant step
Once the simulation is resumed, all the data and parity pageswvard in our research, and is yet another example of how
belonging to this stripe will be highlighted with a coloredsisualization can contribute to our understanding of complex
page frame. Users may specify whether they want to highlightocesses within storage systems and the interactions between
only the valid pages in the stripe, or to include invalid copiggiem.
of th(_a dz_ata and/pr parity pages as wgll. Several stripes can VII. NOTES FORUSERS ANDDEVELOPERS
be highlighted simultaneously with different frame colors. .
Figure 6 shows an example of a highlighted stripe. _ SSDPIa_lyer support.s threg Ie_vels of user involvement. The
Parity update overhead and garbage collection.The first consists of passively viewing the online demos, which
RAID-5-Parity demo shows a device with eight chips and §°Ve' @ range of representative phenomena of data movement

total of 10K pages configured as RAID-5. We run a ZipP" flash devices. The second level is that of thewer

workload in which the size of all write requests is one pagHSet Which makes use of basic as well as advanced features

We expect every write to generate a parity update, resultifﬂf'”ded in .the SSDPIayer distribution. The third level is dg—
in a parity update overhead @f. We first note the uneven veélopment, in which users add new features or FTLs according

distribution of parity updates due to the high update frequent8 t€ir own use cases.

of pages in the first stripe. This phenomenon was discussedgs.Dplayer power usersThe SSDPIayer downloads page

in the context of elastic striping [10]. Highlighting this stripemov.'de‘?’ access tq th? Igtest version as an executable Java
shows that it is not only responsible for a significant portioﬁppl'cat,'on’ which S distributed with the traces we us_ed fqr
of the updates, but its invalid pages also occupy a significeﬂﬁneraﬂng the online Ejem_os, and a sa_mple conﬁgur_atlon file.
part of the device’s overprovisioned space. The SSDPlayer Users’ Guide [40] provides detailed informa-

As the simulation progresses, the parity update overhetéc(’f. on the input type and format, configuration parameters,

drops fromi to 1. The reason for this drop is that the datgvailable FTLs, and additional features.

pages are inherently colder than the parity pages that protecétittp://ssdplayer.cswp.cs.technion.ac.il/downloads/

http://ssdplayer.cswp.cs.technion.ac.il/demos/raid5-parity/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/raid5-separate-parity/
http://ssdplayer.cswp.cs.technion.ac.il/downloads/

—> Inheritance |SSDManager<Device,Chip,PIane,BIock,PaIge>
—<> Aggregation
—@ Composition
:l Base entity SSDManager<HotColdDevice,...,HotColdPagg>

[New entity

| HotCoIdSSDManageIr

Device<Chip>

Device<HotColdChip

HotCoIdDevicel | HotCoIdChipl

Fig. 7. Partial class diagram, depicting the relationship betwthe generic abstract base entities (no fill) and those added for the HotCold FTL (solid fill).

The SSDPlayer distribution allows users to explore a widgeedy garbage collection within each partition, which is
range of use cases without writing a single line of code. Bynplemented within theHotColdPlane The methods in this
editing the configuration file, users may configure the physicabss are responsible for allocating an active block within each
layout of their device (i.e., number of pages per block), adjugartition, and for maintaining the separation of data according
its visual settings (i.e., color of hot and cold pages), artd temperature. This is done by ensuring that valid pages from
provide FTL-specific parameters (i.e., number of partitions)the victim block are moved to an active block in the same

After starting SSDPlayer, users first choose which FTL foartition. There is no specific functionality that had to be
run. They then have the option of specifying an existing I/@nplemented within the chip entity. However, since the base
trace as input, or generating synthetic input with one of trentities are abstract, we had to creatél@ColdChipwhich
existing workload generators. During the simulation, users caggregates the appropriate plandstColdDeviceextends the
adjust the zoom level dynamically, specify breakpoints thdevice class by adding several FTL-specific properties for
conditionally pause the simulation, and view and save tleellecting statistics for display.
detailed device state at any point in the simulation. FTLs are implemented amanagers and HotColdSSD-

SSDPlayer developers.The SSDPlayer Programmer'sManager extends the basic manager class. The manager is
Guide [41] provides a detailed description of the core classessponsible for loading the FTL-specific parameters from the
in SSDPlayer’s code base. This open-source project consistafiguration file and creating the device according to those
of approximately 14K lines of code in approximately 20@arameterddotColdSSDManagealso provides a special trace
files. We distinguish between two scales of programmimgarserHotColdTraceParsermwhich extends the basic parser by
tasks. Adding a new FTL or feature requires adding drandling input lines with temperature tags.
modifying several class-files, and is considered a large-scal€Extending existing features. In addition to the basic
task. However, extending existing features typically consiESL components described above, we opted to extend two
of modifying one or two files, and is considered a small-scaéxisting features as part of thdotCold FTL. We first add
programming task. We demonstrate the different scales belbletColdWriteAmplificationGettewhich implements the basic
by outlining our addition of theHotCold FTL. We refer the statistics interface. It computes the write amplification within
interested reader to the Programmer’s Guide for a comple@ch partition by accumulating page writes and moves at the
documentation of the relevant classes and methods. device level. We defined a histogram where the write ampli-

Extending base entitiesThe HotCold FTL was one of the fication for each partition is plotted in a different color. We
first FTLs added to SSDPlayer, and thus it directly extends thieen addedHotColdWriteAmplificationGetteio HotColdSSD-
abstract base classes, as depicted in FigurdofColdPage Managerfs list of statistics for display. Next, we extended the
extends page base entity. It includes a temperature propditgakpoint base class and defined a new breakpoint type. The
and sets the background color accordingly by overriding th¢otColdWriteAmplificatiorbreakpoint allows users to specify
appropriate methodHotColdBlockextends the block entity, a write amplification valuely/, and a partitionp, so that the
and includes aHotColdPartition property which defines the simulation pauses when the write amplificationgirreaches
partition the block belongs to. We had to override the methV .
ods for getting the block status and frame color to display The entireHotCold FTL implementation consists of approx-
according to its partition. imately 900 lines of code, of which 150 handle the additional

Garbage collection in all of SSDPlayer’s current FTLs istatistics and breakpoint types. Clearly, the programming effort
performed within a single plane. The¢otCold FTL employs required to add a new FTL or feature depends on its com-

plexity. However, straightforward additions to SSDPlayerseaders [52]. Most of SSDPlayer’s features can be made
functionality are usually limited to several well defined partaccessible by choosing the page and font sizes, as well as
of its code base. color scheme that best suits each user’s needs.

Many surveys evaluated the effectiveness of visualization
in computer science and mathematical education [53]-[55]. A

Scientific visualizatiomas been defined as “the transformagraphical representation can help explain the basic concepts
tion of complex, multidimensional data into informative graphin these fields, which are inherently abstract. Indeed, these
ical displays to see the unseen by leveraging what is knowiirveys indicate that visualization makes teaching more enjoy-
through visual methods.” [6]. Traditional scientific visualizagple, improves student motivation, participation, and learning,
tion tools include graphical representations of numerical dathd provides a basis for classroom discussion and interaction
such as the scatterplot, the histogram, the boxplot, and $hgh colleagues. At the same time, several obstacles hinder
contour map. Currently, scientific visualization is consideredige wide adoption of visualization. These mainly consist of
field within computer graphics. Research in this field addressgg overheads of identifying effective software, learning new
challenges such as efficient use of advanced hardware, humasts, searching or generating good examples, and adapting
computer interaction, scalable platforms, abstraction modeisem to the course content [54].
or protocol standardization [4], [42]. Some notable examplesgspplayer presents several advantages in this context. It
of current tools include map animation for earth systeqd gistributed with a set of FTLs that represent the major
research [5], medical visualization applications of augme”t?aﬁproaches in SSD design, which can be easily used with
reality [1], and visualization of three-dimensional nucleic acig_he built-in workload generator or sample traces. The online
structures [43]. To the best of our knowledge, SSDPIayer dgmos provide a set of initial examples for both instructors
the first tool designed for visualizing data movement processgsy students. Finally, it facilitates varying degrees of “active”
in general, and specifically in SSDs. learning: none at all, when viewing online demos, moderate,

Information visualization or data visualization “extends \ynen choosing simulation parameters and analyzing the illus-

traditional scientific visualization of physical phenomena t@ated outcome, or high, when implementing new features.
diverse types of information (e.g., text, video, sound, or

photos) from large heterogenous data sources” [44]. It focuses
on representation of “non-visual data” by attaching meaning- IX. CONCLUSIONS
ful geometric or visual encoding [45]. Michael Friendly [2]
surveys the history of data visualization, drawing a line from The ever-increasing complexity of modern storage systems
early geometric diagrams and maps of the 14th century and their management makes it more and more difficult to
large-scale statistical and graphics software engineering of &i@alyze underlying processes as well as related new methods
21st century, through notable examples from the 19th centugnd optimizations. However, while the scope and functionality
Dr John Snow's dot map that helped identify the watepf data visualization techniques advance, storage system anal-
borne cause of cholera during its outbreak in London (185%gis continues to rely on traditional basic visualization tools.
Florence Nightingale’s polar area charts (or ‘rose diagramsQur experience with SSDPlayer demonstrates how visualiza-
which motivated the improvement of sanitary conditions iion can contribute to our understanding of data movement
battlefield treatment (1857), and The Statistical Atlas of tH@ocesses on flash. Our experience also indicates that similar
Ninth US Census (1874). benefits can be obtained by applying data visualization prin-
Current research in information visualization addresses thigles to almost any other storage system component as well
representation of very large data sets, such as network grapi$s{o entire systems as a whole.
connections between text documents, and real-time streamingn addition to the obvious benefit for storage system analysis
data, focusing on dynamic and interactive visualization [2hnd research, our experience revealed additional valuable
[44], [45]. The interactive aspect is considered crucial fdyenefit of visualizing storage devices. We were able to improve
visual data explorationor visual data miningand includes the quality of our teaching of basic and advanced concepts
interactive linking, filtering, zooming, and projection [3].by playing short demos in the classroom, and by defining
SSDPIlayer facilitates the pursuit of insight into data movemesittensions to the tool as undergraduate project tasks. We also
processes via visualization, in a dynamic and interactive mamproved our presentation of research results that consist of
ner, which is the goal of modern-era information visualizatiomomplex ideas and FTL designs by demonstrating them within
An important related challenge is to adapt the visual displ&SDPlayer at conferences and meetings with the industry.
of digital content to the needs of users with various types &inally, SSDPlayer was the trigger for valuable discussions
visual impairment. Low vision and color vision deficienciesvith colleagues at these events, where we received feedback
(“color blindness”) make it difficult for users to access onlinand ideas from the community on how to improve the tool
learning material [46], websites [47]—[49] and scientific literand to apply it to additional systems and research domains.
ature [50]. Initiatives such as the Web Accessibility Initiativ®©ur experience confirms that the well-established benefits of
(WAI) [51] offer resources and guidelines for developerslata visualization can and should be adopted to storage system
while others provide products such as magnifiers and voicesearch and design.

VIll. RELATED WORK

ACKNOWLEDGMENTS [22]

We thank Or Mauda, Dolev Hadar, and Roee Matsa for thegirs)
contributions to SSDPlayer’s functionality and documentation,

and Fabio Margaglia for generating the trace for theH-

[24]

FTL-MSR demo. We thank Eitan Yaakobi, Assaf Schuster,
Niva Bar-Shimon and Kai Li for their valuable suggestions for

improving SSDPlayer and its appearance, and the anonym&ds

reviewers for their suggestions that helped improve this papgg;
This work was partially supported by GIF grant no. 1-1356-
407.6/2016.

(1]
(2]
(3]

(4

(5]

(6]

(7]

(8l

El

[20]

[11]
[12]
(23]

[14]
[15]
[16]

[17]

(18]

[29]

[20]

[21]

[27]
REFERENCES 28]

R. T. Azuma, “A survey of augmented reality?resence: Teleoperators
and Virtual Environmentsvol. 6, no. 4, pp. 355-385, 1997.

M. Friendly, A Brief History of Data Visualization Berlin, Heidelberg: [29]
Springer Berlin Heidelberg, 2008, pp. 15-56.
D. A. Keim, “Information visualization and visual data minindEEE 30]

Transactions on Visualization and Computer Graphiad. 8, no. 1, pp.
1-8, Jan 2002.

R. S. Laramee, H. Carr, M. Chen, H. Hauser, L. Linsen, K. Muellerrsl]
V. Natarajan, H. Obermaier, R. Peikert, and E. Zhdngure Challenges

and Unsolved Problems in Multi-field VisualizationLondon: Springer
London, 2014, pp. 205-211.
D. DiBiase, A. M. MacEachren, J. B. Krygier, and C. Reeves, “Anima[32]
tion and the role of map design in scientific visualizatio@&rtography
and Geographic Information Systenwsl. 19, no. 4, pp. 201-214, 1992.
D. A. Griffith, Spatial Autocorrelation and Spatial Filtering: Gaining
Understanding Through Theory and Scientific VisualizatioSpringer
Science & Business Media, 2013.

N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manassé,34]
and R. Panigrahy, “Design tradeoffs for SSD performancelJ8ENIX
Annual Technical Conference (AT.Q008.

S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: Locality-aware sector(39]
translation for NAND flash memory-based storage systef@8§3OPS
Oper. Syst. Rewvol. 42, no. 6, pp. 36—42, Oct. 2008.

R. Stoica and A. Ailamaki, “Improving flash write performance by using
update frequency,Proc. VLDB Endow.vol. 6, no. 9, pp. 733-744, Jul.
2013. (36]
J. Kim, J. Lee, J. Choi, D. Lee, and S. H. Noh, “Improving SSD
reliability with RAID via elastic striping and anywhere parity,” #8rd [37]
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks DSN2013.

Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “FlashSim: A simulatof38]
for NAND flash-based solid-state drives,” st International Confer-
ence on Advances in System Simulation SIV2009.

(33]

http://www.openssd-project.org/. [39]
SigNAS-II: Siglead NAND Analyzer Syste@nd ed., Siglead Inc.,
September 2012.

http://www.auslogics.com/en/software/disk-defrag-pro/. [40]

http://www.raxco.com/home/products/perfectdisk-pro/.

G. Yadgar, R. Shor, E. Yaakobi, and A. Schuster, “It's not where youf1]
data is, it's how it got there,” irfth USENIX Workshop on Hot Topics

in Storage and File Systems (HotStorage15. [42
P. Desnoyers, “What systems researchers need to know about NAND
flash,” in 5th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage2013. [43
W. Bux and |I. lliadis, “Performance of greedy garbage collection in
flash-based solid-state drive®grform. Eval, vol. 67, no. 11, pp. 1172—
1186, Nov. 2010. [44]
G. Yadgar, E. Yaakobi, and A. Schuster, “Write once, get 50% free:
Saving SSD erase costs using WOM codes3th USENIX Conference

on File and Storage Technologies FASD15.

F. Margaglia, G. Yadgar, E. Yaakobi, Y. Li, A. Schuster, and45]
A. Brinkmann, “The devil is in the details: Implementing flash page
reuse with WOM codes,” id4th Usenix Conference on File and Storage[46]
Technologies (FASTRO016.

F. Margaglia and A. Brinkmann, “Improving MLC flash performance/47]
and endurance with extended P/E cycles,|BHEE 31st Symposium on
Mass Storage Systems and Technologies (MSSILp.

X. Luojie, B. M. Kurkoski, and E. Yaakobi, “WOM codes reduce write
amplification in NAND flash memory,” irGLOBECOM 2012.

S. Odeh and Y. Cassuto, “NAND flash architectures reducing write am-
plification through multi-write codes,” i80th International Conference

on Massive Storage Systems and Technology (MSBT).

E. Yaakobi, A. Yucovich, G. Maor, and G. Yadgar, “When do WOM
codes improve the erasure factor in flash memories?EEE Interna-
tional Symposium on Information Theory ISP015.

“SNIA IOTTA,” http://iotta.snia.org/traces/388, SNIA, 2014, retrieved:
2014.

D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storadeghs. Storage
vol. 4, no. 3, pp. 10:1-10:23, Nov. 2008.

P. Desnoyers, “Analytic models of SSD write performanc&ans.
Storage vol. 10, no. 2, pp. 8:1-8:25, Mar. 2014.

P. Reinecke, G. Barnett, P. Goldsack, and B. Monahan, “GAS: Guess,
abstract, and speculate,” Hewlett Packard Labs, Technical Report HPE-
2017-05, January 2017.

A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam, “Lever-
aging value locality in optimizing NAND flash-based SSDs,” 9th
USENIX Conference on File and Storage Technologies (FAZIM1.

G. Yadgar, M. Factor, and A. Schuster, “Cooperative caching with return
on investment,” in29th IEEE Symposium on Massive Storage Systems
and Technologies (MSST3013.

G. Yadgar, M. Factor, K. Li, and A. Schuster, “Management of Mul-
tilevel, Multiclient Cache Hierarchies with Application HintsACM
TOCS vol. 29, pp. 5:1-5:51, 2011.

A. Aghayev and P. Desnoyers, “Skylight—a window on shingled disk
operation,” in13th USENIX Conference on File and Storage Technolo-
gies FAST 2015.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” iB8th Annual Design
Automation Conference (DAC2001.

M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi, “Differen-
tial RAID: Rethinking RAID for SSD reliability,"Trans. Storagevol. 6,

no. 2, pp. 4:1-4:22, Jul. 2010.

J. Colgrove, J. D. Davis, J. Hayes, E. L. Miller, C. Sandvig, R. Sears,
A. Tamches, N. Vachharajani, and F. Wang, “Purity: Building fast,
highly-available enterprise flash storage from commodity components,”
in ACM SIGMOD International Conference on Management of Data
(SIGMOD) 2015.

“Introduction to the EMC XtremlO storage array (ver. 4.0),” EMC,
White Paper H11752.7, April 2015.

K. Greenan, D. D. E. Long, E. L. Miller, T. Schwarz, and A. Wildani,
“Building flexible, fault-tolerant flash-based storage systems,’5th
Workshop on Hot Topics in System Dependability (HotD2pp9.

S. Im and D. Shin, “Flash-aware RAID techniques for dependable and
high-performance flash memory SSDEEE Transactions on Comput-
ers vol. 60, no. 1, pp. 80-92, Jan 2011.

S. Lee, B. Lee, K. Koh, and H. Bahn, “A lifespan-aware reliability
scheme for RAID-based flash storage,”A€CM Symposium on Applied
Computing (SAG)2011.

G. Yadgar, R. Shor, E. Yaakobi, and A. Schuster, “SSDPlayer visualiza-
tion platform version 1.2.1 users guide,” May 2017.

R. Shor, G. Yadgar, O. Mauda, D. Hadar, and R. Matza, “SSDPlayer
visualization platform programmers guide for version 1.2.1,” May 2017.

] C. Johnson, “Top scientific visualization research problemBEE

Computer Graphics and Applicationsol. 24, no. 4, pp. 13-17, July
2004.

] X.Luand W. K. Olson, “3DNA: a software package for the analysis, re-

building and visualization of three-dimensional nucleic acid structures,”
Nucleic Acids Researclvol. 31, no. 17, p. 5108, 2003.

J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A. Schur,
and V. Crow, “Visualizing the non-visual: Spatial analysis and inter-
action with information from text documents,” i EEE Symposium on
Information Visualization (INFOVIS)}1995.

C. Chen, “Information visualization,Wiley Interdisciplinary Reviews:
Computational Statisticsvol. 2, no. 4, pp. 387-403, 2010.

K. L. Crow, “Four types of disabilities: Their impact on online learning,”
TechTrendsvol. 52, no. 1, pp. 51-55, 2008.

J. Carter and M. Markel, “Web accessibility for people with disabilities:
an introduction for Web developerdEEE Transactions on Professional
Communicationvol. 44, no. 4, pp. 225-233, Dec 2001.

[48] H. Takagi, C. Asakawa, K. Fukuda, and J. Maeda, “Accessibil
designer: Visualizing usability for the blind, SIGACCESS Access.
Comput, no. 77-78, pp. 177-184, Sep. 2003.

[49] L. Jefferson and R. Harvey, “Accommodating color blind computer
users,” in8th International ACM SIGACCESS Conference on Computers
and Accessibility (Assets2006, pp. 40-47.

[50] B. Wong, “Points of view: Color blindnessNature Methodsvol. 8,
no. 6, p. 441, May 2011.

[51] https:/iwww.w3.0org/WAI/.

[52] http://www.abledata.com!/.

[53] N. PresmegHandbook of Research on the Psychology of Mathematics
Education: Past, Present and Future Sense Publishers, 2006, ch.
Research on visualization in learning and teaching mathematics, pp.
205-235.

[54] T. L. Naps, G. RoBling, V. Alimstrum, W. Dann, R. Fleischer, C. Hund-
hausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J. A.
Velazquez-Iturbide, “Exploring the role of visualization and engagement
in computer science education,” Working Group Reports from ITICSE
on Innovation and Technology in Computer Science Education (ITICSE-
WGR) 2002.

[55] T. Naps, S. Cooper, B. Koldehofe, C. Leska, G. RoRling, W. Dann,
A. Korhonen, L. Malmi, J. Rantakokko, R. J. Ross, J. Anderson,
R. Fleischer, M. Kuittinen, and M. McNally, “Evaluating the educational
impact of visualization,"SIGCSE Bull.vol. 35, no. 4, pp. 124-136, Jun.
2003.

