
Experience from Two Years of Visualizing Flash
with SSDPlayer

Gala Yadgar and Roman Shor
Computer Science Department, Technion
Email: {gala,shroman}@cs.technion.ac.il

Abstract—Data visualization is a thriving field of computer
science, with widespread impact on diverse scientific disciplines,
from medicine and meteorology to visual data mining. Advances
in large scale storage systems, as well as low level storage tech-
nology, played a significant role in accelerating the applicability
and adoption of modern visualization techniques. Ironically, “the
cobbler’s children have no shoes”: researchers who wish to
analyze storage systems and devices are usually limited to a
variety of static histograms and basic displays.

The dynamic nature of data movement on flash has motivated
the introduction of SSDPlayer, a graphical tool for visualizing
the various processes that cause data movement on SSDs. In
2015, we used the initial version of SSDPlayer to demonstrate
how visualization can assist researchers and developers in their
understanding of modern, complex flash-based systems. While we
continued to use SSDPlayer for analysis purposes, we found it
extremely useful for education and presentation purposes as well.
In this paper, we describe our experience from two years of using,
sharing, and extending SSDPlayer, and how similar techniques
can further advance storage systems research and education.

I. I NTRODUCTION

Data visualization refers to applying meaningful geometric
or visual encoding to otherwise “non-visual” data, and is the
focus of numerous academic studies and commercial prod-
ucts [1]–[6]. Early visualization techniques, such as statistical
maps, scatter plots, and histograms, still form the basis of
fundamental research and presentation tools. However, tech-
nological advances and new techniques allow researchers in
many disciplines to use increasingly powerful tools to visualize
large scale and complex data. Special attention is given to the
ability to dynamically control the way data is displayed, by
interactive zooming, filtering, distortion and aggregation.

Ironically, the analysis of the systems and architectures that
facilitate these advances is still limited to basic visualization
in the form of many types of graphs and histograms. In this
context, analyzing the state of the data within storage systems
and devices is especially difficult: the illustration of data se-
quentiality on hard drives using various defragmentation tools
is just about the only well-known example. Unfortunately,
this static representation does not capture some of the major
phenomena in modern storage systems.

Storage systems are designed to dynamically adjust to
changing workload characteristics and system conditions.
Thus, data may migrate between storage nodes for load
balancing, or between storage hierarchies according to its
popularity. Background deduplication may eliminate logical
copies of data, while changing availability requirements may

trigger the creation of replicas or other forms of redundancy.
Visualization is a natural technique for understanding the
effects and implications of these processes. In this paper, we
focus on flash based storage as one example of the complexity
of modern storage architectures.

Data on flash devices moves to a different location whenever
it is updated: the data is written again on a clean page, and
the previous data location is marked as invalid. Theflash
translation layer (FTL) is responsible for mapping logical
addresses to physical pages. Thegarbage collectionprocess
maintains a pool of clean blocks by occasionally erasing a
block with mostly invalid pages after copying its valid pages
to another available block. These internal writes are another
cause for data movement throughout the device.

Many FTL optimizations incur additional internal data
movement. Examples include wear leveling [7], merging of
log blocks [8], partition resizing [9], and parity updates [10].
Quantifying these additional writes is important for analyzing
the effect of such optimizations on the performance and
durability of the flash device. However, doing so is not always
trivial and requires a deep understanding of the interacting
causes of data movement within each device.

Currently available simulators [7], [11] output internal state
and statistics in the form of lists, tables and histograms, from
which deriving internal processes is cumbersome and requires
a great deal of skill and imagination. Basic hardware evalua-
tion boards [12] provide similar output, while advanced ones
provide graph output of block level reliability tests [13]. SSD
optimization tools provide fragmentation information [14],
S.M.A.R.T statistics and block update frequency [15]. How-
ever, complicated flash processes cannot be understood from
these aggregated statistics. Furthermore, these tools are in-
tended for off-the-shelf SSDs, and cannot be used for research
prototypes.

The increasing complexity of state-of-the-art flash man-
agement motivated us to introduce data visualization princi-
ples to storage systems research and analysis. We developed
SSDPlayer, an open source graphical tool for visualizing data
layout and movement on flash devices, and presented its
initial version in the 7th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage ’15) [16]. The feedback
we received from the workshop attendees, as well as from our
colleagues, inspired us to extend the interactive features in
SSDPlayer and the complexity of the devices it can display.
It also encouraged our use of SSDPlayer for educational



� � �

�

chip
plane

block

page

Valid Histogram Write Amplification

FTL input

�

�

�

timeline

Fig. 1. SSDPlayer display (simplified)

purposes in undergraduate courses and projects, and for the
presentation of new ideas and designs in academic confer-
ences and industrial collaboration meetings. In this paper, we
describe our experience from two years of visualization, along
with our insights into how it can advance storage system
research.

The rest of this paper is organized as follows. We in-
troduce the basic features and structure of SSDPlayer in
Section II. We then take a close look at several use cases that
demonstrate the different aspects of visualization in storage
system analysis. Section III describes our experience from
using SSDPlayer for educational purposes. In Section IV,
we describe our experience from presenting complex ideas
and designs. Section V describes some of the feedback we
received from colleagues and conference participants and
how this feedback was incorporated into the new version of
SSDPlayer. We describe some of our research experience with
SSDPlayer in Section VI, and provide additional notes to users
and developers in Section VII. We discuss related work on
visualization in Section VIII, and conclude in Section IX.
Throughout this paper, we refer the reader to one-minute
clips that were generated with SSDPlayer for demonstration
purposes and are available on the SSDPlayer website1.

II. SSDPLAYER

SSDPlayer is an open source project. Thanks to its flexible
structure, a wide range of functionalities can be added to
it in a straightforward manner. These include many recently
suggested FTL optimizations, including wear leveling, page
mapping, and garbage collection algorithms. Users can easily
modify the graphical parameters to visualize the concepts
they are interested in and display the details and statistics
relevant to their analysis. We describe several such scenarios
and additions in the following sections.

We implemented SSDPlayer in Java in order to maximize
portability and minimize platform-specific dependencies. It
is designed to provide the most general SSD functionality,
in order to allow easy extensions and additions for a wide
range of capabilities. The basic flash components – e.g., page,
block, page mapping and garbage collection – are implemented
as abstract classes that can be extended according to the
desired FTL functionality. The simulation and visualization
components are similarly flexible: the trace parser can be

1http://ssdplayer.cswp.cs.technion.ac.il/

extended to process different trace formats. Alternatively,
synthetic access distributions can be added by extending the
workload generator. The basic histograms can be extended to
display additional aggregated statistics.

Our goal of keeping SSDPlayer as simple and easily
extendible as possible led to several design choices. Most
of the complexity of full scale simulators is due to accu-
rate performance modeling that takes into account numerous
device-specific parameters. Thus, we implemented SSDPlayer
from scratch, focusing on write-only workloads, and only on
the way data moves, regardless of how much time it takes.
However, it can be extended to provide performance analysis
by adding delays during time-consuming operations such as
erasures and copies, or by collecting the relevant statistics and
presenting them as a histogram or a final output file.

SSDPlayer supports two modes of operation. Insimulation
mode, it simulates the chosen FTL on a raw I/O trace or on
a synthetic workload, illustrating the SSD state at each step.
This illustration is continuous, thus forming a “clip” of the
data movements that take place during execution. This mode
is useful for testing and analyzing various features without,
or before, implementing them in a full scale simulator or
hardware platform.

In visualizationmode, SSDPlayer illustrates operations that
were performed on an upstream simulator or device. The input
in this mode is an output trace generated by a simulator,
hardware evaluation platform, or a host level FTL, describing
the basic operations that were performed on the flash device —
writing a logical page to a physical location, changing block
state, etc. This mode is useful for illustrating processes that
occur in complex research and production systems, without
porting their entire set of features into SSDPlayer. We demon-
strate the benefit of this mode in Section IV.

The SSDPlayer display, depicted in Figure 1, is organized
into chips, planes, blocks and pages, as specified by the user
at startup. Colors and textures are used to represent page and
block properties, such as data ‘temperature’ or valid page
count. A page’s properties and state determine its fill color,
texture, and frame color. A block’s properties determine its
background and frame colors. Note that the page and block
properties need not necessarily match. Aggregated informa-
tion such as write amplification is displayed in continuously
updated histograms, illustrating how the device’s state changes
over time.

There is a tradeoff between the complexity and number
of details displayed, and how easily the visualized processes
can be identified and interpreted. Thus, while there is no
restriction on the complexity of the FTL schemes implemented
within SSDPlayer, users must carefully choose the size of
the visualized device and which page and block attributes to
display.

For demonstration purposes, we normally use a ‘toy’ device
of 2K pages. A device of up to 12K pages can be viewed
in full detail on a regular HDTV screen. SSDPlayer handles
larger devices of more than 250K pages by adjusting the level
of detail presented. A subset of the device’s planes or chips

http://ssdplayer.cswp.cs.technion.ac.il/


can be viewed in full detail while the simulation continues
to update the state of the entire device. Alternatively, the
entire device can be viewed by omitting fill texture and by
aggregating the presentation of an entire block’s pages into one
smaller rectangle. SSDPlayer allows to dynamically zoom-in
and zoom-out between several levels of detail and different
aggregation criteria. We describe this option in greater detail
in Section V.

III. A N EDUCATION USE CASE: WRITE AMPLIFICATION

We originally used SSDPlayer to illustrate data movement
with uniform workloads, where it is well-understood, and to
show how a visual illustration can shed some light on the
non-uniform case, where data movement is complex and not
fully understood. In the process of generating the respective
demos, we identified their potential for illustrating even the
basic concepts of garbage collection and write amplification
for students who are encountering them for the first time. In
this section, we describe these concepts and our experience
in using SSDPlayer to illustrate them in the context of under-
graduate courses and projects.

SSD basic design concepts.Updates in SSDs are performed
out-of-place: the previous data location is marked as invalid,
and the data is written again on a clean page. To accommodate
these writes, some physical storage capacity is not included
in the device’s exported logical capacity. Thus, the device’s
overprovisioningis defined asT−U

U
, whereT andU represent

the number of physical and logical blocks, respectively [17].
The FTL is responsible for mapping logical addresses to
physical pages.

The garbage collection process is invoked whenever the
number of clean blocks drops below a certain threshold.
Garbage collection is typically performedgreedily, picking the
block with the minimumvalid count (the lowest number of
valid pages) as the victim forcleaning. The valid pages are
moved—read and copied to another available block, and then
the block is erased. These additional internal writes, referred to
aswrite amplification, delay the cleaning process, and require,
eventually, additional erasures.

The most accurate formula for estimating the write ampli-
fication with greedy garbage collection as a function of page
size and overprovisioning is that of Bux and Iliadis [18]. They
derive the formula from a detailed analysis of the number of
blocks with each valid count, and show that with a random
uniform workload, the minimum value (MinValid) converges
to a single value or to two consecutive values. Desnoyers [17]
performs a similar analysis which results in a formula which
is less accurate but can be calculated more easily.

Illustration with SSDPlayer. The Greedy FTL in
SSDPlayer implements greedy garbage collection within each
plane, and a page allocation scheme that balances the number
of valid pages between planes. All pages have the same color,
but the page fill changes to a checkered pattern if it has been
copied to a new block during garbage collection. Invalid pages
are crossed out, but maintain their fill color and pattern until
they are erased.

Fig. 2. Close-up of one block at the end of theGreedy-Uniform(a)
andtheGreedy-Zipf(b) demos. The pages that were copied to a clean
block during previous garbage collections are filled with a checkered
pattern. With the Zipf workload, their number is higher, which also
results in a higher valid count and more erasures.

In the Greedy-Uniformdemo, this basic FTL is executed
with a small SSD and a uniform random workload. This clip
shows that shortly after the SSD’s logical capacity is filled and
garbage collection begins,MinValid stabilizes at 10-11 pages.
The portion of each block that is taken up by valid pages
transferred at garbage collection is clearly visible thanks to
their different pattern.

We use the same SSD and FTL with a Zipf workload. The
Greedy-Zipfdemo shows thatMinValid converges more slowly
and at a higher value of 15-16 pages. The reason is that cold
pages that are rarely updated remain valid during consecutive
garbage collection invocations. As a result, write amplification
increases, leaving less space available in the erased blocks for
invalid copies of hot pages, thus causing even more frequent
garbage collection, and so on. This phenomenon is graphically
visible as a dense grouping ofinvalid (X) marks on the plainly
filled pages that represent user writes. Figure 2 illustrates this
for one block.

The Greedy-Sequentialdemo is designed to show the best-
case scenario of garbage collection and write amplification.
With a completely sequential workload, the demo shows
that MinValid is always zero and the write amplification is
always one, and that garbage collection does not generate any
internal writes. This is a trivial result in terms of workload
and performance analysis, but is not completely obvious to
students who encounter these concepts for the first time.

We now use these demos regularly in an undergraduate
course on storage systems, where their contribution is twofold.
First, explaining data movement and its effects while referring
to an “animated” example that can be paused or rewinded is
much easier for an instructor than appealing to the students’
imagination or constructing a complex series of individual
slides. Second, as students assimilate the new concepts much
faster, they often raise issues that are beyond basic design
principles, such as wear leveling and possible optimizations
of greedy garbage collection. Thus, visualization helps us use
our limited teaching hours more effectively, and to generate
discussion and interest in advanced related topics.

Hands-on experience with SSDPlayer.For students who
are interested in storage system design, we leverage the
flexible design of SSDPlayer to serve as a basis for undergrad-
uate projects. In these projects, students typically read some

http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-uniform/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-uniform/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedysequential/


background on SSD design challenges [7], [10], and then delve
into the details of implementing additional FTLs or features
within SSDPlayer. These projects have been very successful,
and their products have been merged into the new version of
the tool.

For example, one pair of students added the possibility
to define breakpoint rules within the player, stopping the
simulation whenever a predetermined condition holds. In the
course of this project, they had to identify interesting events
that could be triggers for analysis or debugging purposes,
such as the first invocation of garbage collection in a certain
plane or chip, or the first time the valid count or write
amplification reach a certain value. Other projects’ goals,
such as displaying an info screen when the simulation is
paused, or dynamically switching between different zoom
levels, required students to identify meaningful aggregation
metrics and possible inconsistencies between different FTLs.
The RAID functionality, discussed in Section VI, was also
implemented as part of an undergraduate project. This project
required a deep understanding of the different RAID levels,
the challenges in parity updates, and how they differ in SSDs
and in hard drives.

SSDPlayer has become an integral part of our educational
tool box, where visualization is the fundamental contributor
to its success. Entry-level students benefit from our ability to
clearly illustrate basic design concepts. Students who choose
to specialize in the subject benefit from a simplified framework
that can be easily extended. More importantly, SSDPlayer
showsthem what is going on inside the device. This helps them
understand the consequences of their design choices, and use
their time effectively. We believe that visualization can help
in a similar manner when teaching subjects such as cache
replacement, paging, dynamic memory allocation, and large
cluster management, where data continuously moves from one
place to another.

IV. A PRESENTATION USE CASE: REPROGRAMMING

We originally used SSDPlayer to demonstrate the advantage
of visualization in the analysis of data movement in complex
FTL designs, such asReusable SSD[19], which reuses flash
pages for additional (second) writes before they are erased.
The demo videos we generated turned out to be a valuable
tool in presenting this and subsequent research results, both
to an academic audience in conferences and to practitioners
within industry collaborations. In this section, we explain the
basic challenges in reusing flash pages, and show how we used
SSDPlayer to visualize our approach.

Flash page reuse.Flash pages are composed of floating-
gate cells, whose voltage levels represent different bit values.
Single-level flash cells (SLC) can store a single bit value,
1 (initially) or 0. Multi-level flash cells (MLC) support four
voltage levels, mapped to four two-bit values: 11 (in the initial
state), 01, 00 or 10. In MLC flash, the MSB (high) and the
LSB (low) bits represented by the cell are each mapped to a
different flash page. Thus, MLC flash blocks are composed
of high and low pages, respectively. Flash is a write-once

medium—after its cells areprogrammedto increase their
voltage level, they must be erased prior to writing again. This
constraint motivates the use of out-of-place updates in SSDs,
which incur additional internal writes and erasures.

Reusable SSD reduces the number of erasures by perform-
ing additional writes on a block before it is erased. To perform
a second write, the logical page written by the user is encoded
with a special encoder that adds redundancy bits, producing an
output that is twice the page size and can be written on a pair
of physical pages that have already been programmed. The
encoder guarantees that writing the new data will only require
increasing the cell voltage level, thus complying with standard
flash programming constraints. This condition is sufficient to
allow reuse of SLC flash pages. We thus refer to this scenario
as “ideal” page reuse.

Additional limitations apply to the reuse of MLC flash
pages, as a result of specific optimizations applied during
MLC page programming. Page reuse is still possible, but
cannot utilize all the block’s pages for two writes [20]. One
possible pattern for page reuse is the low-low-high (LLH)
reprogramming scheme [21], in which blocks are programmed
in two rounds. In the first round, only the low pages are
programmed as first writes. The second round takes place after
most of these pages have been invalidated, and consists of
programming the unused (high) pages for the first time, and
reprogramming the invalidated low pages as second writes.

The commonly used formula for write amplification cannot
be used when additional writes are performed before the block
is erased. The derivation in [18] and [17] does not extend
trivially to this case, because the number of additional writes
that can be performed depends on the way invalid pages or
entire blocks are reused. In fact, since some redundancy must
always be added to the logical data to enable second writes,
the conventional definition of write amplification does not
accurately represent flash utilization in this context. Several
models, with varying degrees of complexity, were suggested
for analyzing the properties of second writes in various de-
signs [22]–[24]. We use SSDPlayer to show how a graphical
illustration can provide important insights into such complex
designs.

Presentation with SSDPlayer.The ReusableFTL imple-
ments ideal second writes in SSDPlayer. Each block is first
written normally by first writes. When it is chosen as victim for
garbage collection, it is either erased orrecycled— allocated
for second writes without erasure2. Upon receiving a write
command, if a recycled block is available, a second write is
performed on a pair of physical pages in the recycled block
whose data has been invalidated.

Pages are colored according to the write level of their logical
page. When a page is copied to a new block before erasure
(such copies are always performed as first writes), it maintains
the color of itsoriginal write level, but changes its texture to
that of an internal write. Thus, the different colors represent

2The detailed conditions for block recycling are specified by the Reusable
SSD design [19].



Fig. 3. Reuse process of one block in theLLH-FTL-MSR demo.
When the block is allocated for future reuse, its state is changed
to PartiallyUsed (a) and only its low pages are programmed (green).
When most of these pages are invalid, the block is allocated for
reuse. Its state changes to Reused (b), its invalid low pages are
reprogrammed (blue), and its high pages are programmed for the first
time. The position of low and high pages in this block represents their
layout in the OpenSSD hardware.

the portion of the data written in first and second writes
within both user and internal writes. In addition, we replaced
the write amplification histogram with one showinglogical
writes per erasure. With N pages per block and first writes
only, N logical writes per erasure are equivalent to a write
amplification of 1. With second writes,N×1.5 logical writes
per erasure are the maximum value achievable when all pages
are fully utilized for two writes, with no internal writes.

In the Reusabledemo, we run the Reusable FTL on a
small SSD with N=32 and a Zipf workload. It shows that
most of the pages are utilized for two writes, but that many
of the logical pages written as second writes (blue) are still
valid when the block is erased and must be copied to a
clean block (checkered). This means that pages written without
prior erasure of the block end up occupying newly erased
blocks when they are copied, reducing the benefit from second
writes. Indeed, only 26 logical writes (out ofN×1.5=48
possible) are performed per erasure. Although this is more
than the 17 writes per erasure achieved with first writes only3,
flash utilization can clearly improve. We used this demo in
a graduate course on coding theory, to illustrate the design
challenges of performing additional writes and to motivate
a theoretical model for analyzing and optimizing garbage
collection in this context.

Visualization of Reusable SSD.The full Reusable SSD
design is much more complex. It performs second writes
in parallel to blocks in different planes, identifies cold data
without external tagging, and handles encoding failures and
mapping constraints [19]. The implications of Reusable SSD
for device lifetime and performance have been thoroughly
evaluated by a detailed implementation in DiskSim [7].

We took advantage of this implementation to illustrate
the full Reusable SSD design in SSDPlayer. We added a

3This value is derived fromMinValid=15 in the Greedy-Zipf demo.

logging mechanism to the implementation in DiskSim, which
logs all physical write commands, garbage collection pro-
cedures, and state changes to a trace file. In the online
ParallelReusable-Zipfand ParallelReusable-MSRdemos, we
use this trace file as input to SSDPlayer in visualization
mode to visualize the complex data movement in the full
Reusable SSD design with Zipf and real workloads [25], [26],
respectively. We used this demo for presenting Reusable SSD
at conferences, where it was especially useful for illustrating
how all our design choices were combined within a complete
FTL implementation.

Visualization of LLH-FTL. LLH-FTL (Low-Low-High Re-
programming FTL)is a full FTL design that emerged from
our detailed research on MLC flash page reuse [20]. To
accommodate second writes, LLH-FTL reserves some of its
blocks in apartially-usedstate where only their low pages are
used. A partially-used block can be reused, in which case the
FTL will reprogram all or some of the low pages and all the
high pages. The number of partially-used blocks is controlled
by a set of conditions that balance reuse potential and the
availability of overprovisioned space. To dynamically adjust
their number, the FTL can forego recycling of a partially-used
block, and instead program the high pages and leave the low
pages untouched until the block is erased.

Our research consisted of a full implementation of LLH-
FTL on the OpenSSD Jasmine board [12] for evaluation. We
also used an adaptation of this FTL implementation as an
emulator for evaluating the effect of additional parameters that
could not be modified on the hardware platform. We added a
logging mechanism to this emulator that produced a similar
output as the log of DiskSim described above, and we used
this output to generate theLLH-FTL-MSRdemo. The lifecycle
of reused blocks is clearly illustrated: the high pages remain
white while they are partially used. The low, used (green)
pages are then reused and turn blue, while the clean (white)
pages are used for the first time. Figure 3 zooms in on one
block during this process.

We used this demo to illustrate LLH-FTL at the conference
where it was first presented. In subsequent, longer talks,
we played both this demo and that of Reusable SSD, to
emphasize the difference between ideal and practical page
reuse in real systems. Thus, our presentation consisted of a
visualization of the same workload (the prn0 volume from
the MSR Cambridge collection [25], [26]) handled by two
different FTL designs implemented on two different platforms.
This visualization complemented our theoretical analysis and
evaluation results, by illustrating the applicability as well as
the limitations of our research results.

SSDPlayer has proved a powerful tool for presenting com-
plex ideas and designs to expert audiences in advanced
courses, academic conferences, and collaborations with the
industry. In this context, too, explaining the details of a
complex design is much easier when a visualization of its
full implementation is playing in the background. This allows
us to use our presentation time effectively and engage our
audience, who, in turn, can easily follow the details of our

http://ssdplayer.cswp.cs.technion.ac.il/demos/llh-ftl-msr/
http://ssdplayer.cswp.cs.technion.ac.il/demos/reusable/
http://ssdplayer.cswp.cs.technion.ac.il/demos/parallelreusable-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/parallelreusable-msr/
http://ssdplayer.cswp.cs.technion.ac.il/demos/llh-ftl-msr/


1 2 8 5 6 3 1 8

8 10 4 6 9 1 1 7

8 1 4 1 5 8 7 10

9 6 1 8 5 8 10 1

5 10 9 10 7 10 9 7

2 3 9 1 5 9 3 6

4 9 8 4 8 7 6 6

4 3 9 5 3 6 6 2

3 9 10 10 10 10 10 8

10 10 7 7 9 7 10 9

9 7 7 5 8 8 9 8

7 8 3 3 3 1 1 4

(a)
Valid count =3
Erase count =0

(b)
Valid count =10
Erase count =2

(c)
Valid count =15
Erase count =14

Fig. 4. Close-up of one block during theHotCold-1demo with a Zipf
workload, tagged with 10 temperature ranges, where red (1) is the
hottest and blue (10) is the coldest. The valid count is shown at the
time when the block is chosen for the next erasure, where it is equal
to MinValid. The MinValid pages that were copied to a clean block
during previous garbage collections (checkered pattern) are from the
coldest temperature ranges. This demo shows their portion increasing
until it stabilizes at roughly half the block size.

design. These benefits of visualization can also be gained by
developers and distributers in their interaction with existing
and potential customers.

V. A FEEDBACK USE CASE: HANDLING LARGE DEVICES

We originally used colors to represent page access frequency
in SSDPlayer to show how simple visual aids can help clarify
not only how data moves, but also why it moves. When
presenting our demos, we received valuable feedback and
advice on how to extend this concept to additional attributes,
realistic device sizes, and additional architectures and domains.
In this section, we demonstrate the benefit from using colors
in analyzing workloads and SSD performance, and how the
feedback from the community helped us improve SSDPlayer
in this context.

Hot and cold data separation.Separating hot and cold
data has been shown to reduce write amplification and, re-
spectively, garbage collection costs and cell wear [9], [27].
Desnoyers [27] analyzes cases in which the hot and cold
portions of the workload are each accessed with different
uniform distributions, showing that separating them to differ-
ent partitions with greedy garbage collection results in the
same write amplification as in the uniform case. Stoica and
Ailamaki [9] analyze a workload with severaltemperatures.
They show that several temperatures can be grouped into the
same partition without increasing the write amplification, as
long as the skew within each partition does not exceed a certain
degree. The conclusions of both studies are based on a rigorous
analysis of data movement processes.

The HotCold FTL implemented in SSDPlayer separates
pages into partitions according to their temperature. It is used
with traces in which each input write request is tagged by a
temperature tag4. The user specifies the number of partitions,
P , and the highest temperature of pages that belong to each

4SSDPlayer does not currently implement online temperature classification.
This functionality can be added by extending the HotCold FTL.

Fig. 5. Zoom-out view of a 32K-page device in theLarge-HotCold-5
demo. Aggregate information is displayed by coloring each block
according to the average temperature of its pages.

partition. Each plane hasP active blocks, on which pages of
each partition are written. When an active block is full, a new
clean block is allocated for this partition. Greedy garbage col-
lection is used, determining partition sizes implicitly according
to the number of writes with each temperature.

Visualization with SSDPlayer. As a reference point, we
first run theHotCold FTL with one partition and a Zipf work-
load where requests are tagged with ten different temperatures.
TheHotCold-1demo is essentially a replay of the demonstra-
tion in the Greedy-Zipf demo (Figure 4 shows snapshots of
the first block in the device during this demo). It shows how
a simple addition of colors can facilitate our understanding of
the process described in Section III: before garbage collection
starts, the red pages, which belong to the top five temperatures
(and only 2% of the data), occupy roughly half of each block,
representing their portion of accesses in the trace. As the
garbage collection process advances, blue (cold) checkered
(copied) pages occupy increasing portions of each block, most
of them remaining valid until the next garbage collection on
this block.

When we separate the data into two or three partitions,
we observe a process similar to that in theHotCold-1demo,
because within each partition, pages are still accessed with a
relatively high skew. However, this behavior changes when
we define five partitions, one for every two temperatures.
For this trace, this granularity is fine enough to reduce the
skew in the cold partitions, so that garbage collection within
each partition behaves as with a uniform workload. Indeed,
in the HotCold-5 demo, MinValid stabilizes at 10-11 pages
like in the Greedy-Uniformdemo. This process, described by
Desnoyers [27], is seen clearly in the demo.

Visualizing large scale devices.The design of SSDPlayer
had to address the tradeoff between the level of detail pre-
sented and the size (measured in number of pages) of the
device that can be clearly visualized. In the initial version of
SSDPlayer, users could turn off the display of logical page
numbers and per-block counters, which allowed them to view
devices of up to 20K pages with reasonable clarity. However,
this option had to be specified at startup, and consisted mainly
of minimizing the pages without modifying their displayed

http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/large-hotcold-5/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-zipf/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-5/
http://ssdplayer.cswp.cs.technion.ac.il/demos/greedy-uniform/


attributes.
A valuable piece of advice we received when presenting

SSDPlayer was to handle large devices by “zooming out”,
aggregating the information per block instead of just reducing
page size. Thus, instead of blocks being presented as a
collection of pages, they can be presented as solid objects,
whose color represents the aggregate value of one of the
pages’ attributes. In the current SSDPlayer version, users can
pause the simulation, adjust the level of detail presented on
the screen, and specify the attributes they wish to view. Some
of these attributes are common to all FTLs, such as the valid
count or blockage—the number of times it has been erased.
Others are available only for specific FTLs, such as the average
temperature of pages in the HotCold FTL, or average write
level in the Reusable FTL. This addition makes it possible to
view devices with over 250K pages, and observe phenomena
that could not be easily discerned in smaller devices or partial
visualization of large devices.

The onlineLarge-HotCold-5demo shows how zooming out
helps analyze a device with 32K pages. The input is a Zipf
workload with the same parameters used in theHotCold-5
demo (α=1), where pages from every two temperatures are
stored in a separate partition. The first zoom level shows
entire pages, as in the previous demos, illustrating the different
speeds in which pages of different temperatures are invali-
dated. The second zoom level omits the page numbers and
block counters from the display, providing a detailed view of a
larger portion of the device. In the last two zoom levels, which
differ in the size of the blocks presented, pages are omitted
altogether and blocks are colored according to an aggregate
metric.

In this demo, blocks are colored according to the average
temperature of their pages so that the simulation continues
to show how the allocation of blocks to partitions converges.
Figure 5 shows a snapshot of the SSDPlayer display at this
zoom level. At the end of the demo, we switch the color
scheme to represent block age, in order to show the case for
wear leveling—blocks that are allocated to the hot partition are
erased repeatedly, while blocks storing cold pages are rarely
erased, and stay “young”.

We note that this phenomenon was not as obvious with
the same distribution on a small device. When the number of
logical pages is small, the “long tail” of the Zipf distribution is
not long enough—the cold pages are accessed less frequently
than the hot pages, but frequently enough to generate some
data movement in the cold partitions. Thus, the uneven wear
is less pronounced. Uneven wear can still be demonstrated
with a small device, but doing so requires a more extreme
access distribution as input.

The intuitive nature of visualization is a key factor in
receiving valuable feedback from the community. Our ex-
perience is that when researchers are first presented with
SSDPlayer, ideas on extending or applying it to their own area
of interest immediately come to mind. Notable suggestions
we have received include applying our visualization technique
to large pools of RAM [28], content defined storage [29],

heterogenous storage hierarchies of RAM and flash, cache
organization [30], [31], log structured file systems, shingled
magnetic recording [32], and the interaction between file
systems or databases and their underlying storage. Some of
these extensions are part of our future work. We are even aware
of an ongoing project, inspired by SSDPlayer, of visualizing
satisfiability of clauses and derived conditions during long
executions of SAT solvers [33]. We believe that complicated
phenomena can be identified and analyzed in many domains
within computer science and specifically in systems research,
as visualization becomes a standard research tool.

VI. A RESEARCH USE CASE: RAID PARITY OVERHEAD

The increase in SSD capacity, with the shift from SLC to
MLC and TLC flash, comes at the cost of reduced reliability.
An increasingly common approach to compensate for the
reduced reliability is to organize data in RAID stripes, either
within an array of SSDs [34]–[36] or within the chips of a
single SSD [10], [37]. However, the frequent parity updates
required in these architectures increase the write amplification
and device wear. Thus, understanding the data movement
processes caused by these additional updates is crucial for
evaluating the overall contribution of RAID to SSD reliability.
In this section, we describe the basic challenges of RAID in
SSDs, and how they are visualized within SSDPlayer. We
then describe our insights from visualizing several common
scenarios.

RAID in SSDs. In traditional RAID architectures, designed
for an array of hard drives, interleaved parities help minimize
the overheads of reading old parity values and writing the
updated values. However, flash based architectures must also
consider theparity update overhead—the additional flash
writes caused by parity updates. The parity overhead is defined
as P

P+D
, whereP andD are the number of parity and data

pages written, respectively [10]. The parity update overhead
depends on the size of the write requests (larger requests
require less parity updates), and on the amount of parity
pages that are copied to new blocks during garbage collection.
Commercial RAID architectures that are applied to arrays of
SSDs minimize the parity update overhead by only writing
entire stripes to flash [35], [36].

RAID can also be employed within a single SSD, where
data is striped across separate chips and protected by one
or more parity pages in each stripe. In these architectures,
the RAID functionality is embedded into the FTL, which is
responsible for updating the parity whenever data is written.
Several optimizations have been suggested for minimizing
the parity update overhead in these architectures. Examples
include write buffering of parity pages [38], adapting stripe
size to device age [39], and “elastically” mapping data and
parity to stripes of flexible size [10]. The storage and update
overhead of parity pages motivated these optimizations. We are
further interested in how parity updates affect the efficiency
of the garbage collection process, and how their overhead is
affected by it.

http://ssdplayer.cswp.cs.technion.ac.il/demos/large-hotcold-5/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-5/


Fig. 6. Toy example of RAID-5-FTL and a device of three chips
and four pages per block. Logical pages 0-5 (gray) were written
in consecutive requests, each generating a parity (turquoise) update.
Stripe 0 is highlighted by a red page frame, showing the logical pages
that belong to it, and both the valid and invalid copies of the parity
page.

Visualizing RAID in SSDPlayer. RAID is implemented
within SSDPlayer in three different FTLs, corresponding to
the most commonly used RAID architectures.RAID-1-FTL
implements mirroring: chips are divided into pairs and data in
one chip in the pair is replicated on the other.RAID-5-FTL
implements one parity for every stripe. The parity position is
interleaved, so that different chips store the parity of different
stripes.RAID-6-FTL implements two parity pages per stripe.
When a logical page is written, the RAID FTLs are responsible
for updating the parity (or parities) of the stripe this page
belongs to. If a write request includes several pages in the
same stripe, the parity of this stripe is updated only once.
Parity and data pages have different colors, which makes it
easy to distinguish between them when they are first written,
and when they are copied during garbage collection. Extra
reads of old parity pages are not visualized by SSDPlayer,
which is designed to visualize data movement. Similarly, the
encoding scheme which determines the content of the parity
pages is orthogonal to this analysis and is not implemented.

The parity update overhead is displayed in a continuous
histogram next to the one showing the write amplification,
making it easy to compare the two measures. Another im-
portant feature isstripe highlighting: when the simulation is
paused, users may specify a stripe they wish to follow closely.
Once the simulation is resumed, all the data and parity pages
belonging to this stripe will be highlighted with a colored
page frame. Users may specify whether they want to highlight
only the valid pages in the stripe, or to include invalid copies
of the data and/or parity pages as well. Several stripes can
be highlighted simultaneously with different frame colors.
Figure 6 shows an example of a highlighted stripe.

Parity update overhead and garbage collection.The
RAID-5-Parity demo shows a device with eight chips and a
total of 10K pages configured as RAID-5. We run a Zipf
workload in which the size of all write requests is one page.
We expect every write to generate a parity update, resulting
in a parity update overhead of1

2
. We first note the uneven

distribution of parity updates due to the high update frequency
of pages in the first stripe. This phenomenon was discussed
in the context of elastic striping [10]. Highlighting this stripe
shows that it is not only responsible for a significant portion
of the updates, but its invalid pages also occupy a significant
part of the device’s overprovisioned space.

As the simulation progresses, the parity update overhead
drops from 1

2
to 1

3
. The reason for this drop is that the data

pages are inherently colder than the parity pages that protect

them. Thus, they are more likely to be valid and copied during
garbage collection. As a result, parity pages are responsible for
a smaller portion of internal writes than data pages, and their
update overhead decreases as the write amplification increases.
The space occupied by the data and parity of the hottest stripes
decreases with each garbage collection invocation. We also
see, at the end of the simulation, that the space occupied by
valid and invalid parity pages consists of roughly 25% of the
device’s capacity. This is twice the storage overhead expected
in a RAID-5 architecture with eight nodes, which is 12.5%.

This demo illustrates a phenomenon similar to the one
shown in theHotCold-1 demo, where the cold pages are
repeatedly copied during garbage collection, generating ex-
cessive internal writes. Our extension of the RAID-5 FTL
was a natural next step following the identification of the
same process in two different architectures. TheRAID-5+FTL
minimizes the effect of parity updates on write amplification
by writing data and parity pages in two separate partitions.
This can be viewed as a special case of separating hot and
cold data, where the FTL is aware of the “hotness” of the
parity pages. In theRAID-5-SeparateParitydemo, we run the
same trace on the same device with the RAID-5+ FTL. This
demo shows that the space occupied by parity pages converges
to 14%, which is only slightly higher than the expected 12.5%.
As a result, the parity update overhead remains almost1

2
, but

the write amplification is lower (1.75 instead of 1.9).
The RAID-5+ FTL is not intended to be a full FTL design.

The benefit from separating data and parity pages depends
on the size of requests, the skew in the data itself, and on
additional optimizations such as write buffering. Nevertheless,
our experience of using it within SSDPlayer, on a variety of
device sizes and workload distributions, resulted in valuable
insight into the interaction between parity update overhead
and write amplification. This insight was a significant step
forward in our research, and is yet another example of how
visualization can contribute to our understanding of complex
processes within storage systems and the interactions between
them.

VII. N OTES FORUSERS ANDDEVELOPERS

SSDPlayer supports three levels of user involvement. The
first consists of passively viewing the online demos, which
cover a range of representative phenomena of data movement
on flash devices. The second level is that of thepower
user, which makes use of basic as well as advanced features
included in the SSDPlayer distribution. The third level is de-
velopment, in which users add new features or FTLs according
to their own use cases.

SSDPlayer power users.The SSDPlayer downloads page5

provides access to the latest version as an executable Java
application, which is distributed with the traces we used for
generating the online demos, and a sample configuration file.
The SSDPlayer Users’ Guide [40] provides detailed informa-
tion on the input type and format, configuration parameters,
available FTLs, and additional features.

5http://ssdplayer.cswp.cs.technion.ac.il/downloads/

http://ssdplayer.cswp.cs.technion.ac.il/demos/raid5-parity/
http://ssdplayer.cswp.cs.technion.ac.il/demos/hotcold-1/
http://ssdplayer.cswp.cs.technion.ac.il/demos/raid5-separate-parity/
http://ssdplayer.cswp.cs.technion.ac.il/downloads/


chipList

(1...*)

planeList

(1...*)

blockList

(1...*)

pageList

(1...*)

HotColdDevice HotColdChip HotColdPlane HotColdBlock HotColdPage

Device<HotColdChip> Chip<HotColdPlane> Plane<HotColdBlock> Block<HotColdPage>

HotColdSSDManager

SSDManager<HotColdDevice,…,HotColdPage>
Composition
Aggregation
Inheritance

Base entity
New entity

Chip<Plane> Plane<Block> Block<Page> PageDevice<Chip>

SSDManager<Device,Chip,Plane,Block,Page>

Fig. 7. Partial class diagram, depicting the relationship between the generic abstract base entities (no fill) and those added for the HotCold FTL (solid fill).

The SSDPlayer distribution allows users to explore a wide
range of use cases without writing a single line of code. By
editing the configuration file, users may configure the physical
layout of their device (i.e., number of pages per block), adjust
its visual settings (i.e., color of hot and cold pages), and
provide FTL-specific parameters (i.e., number of partitions).

After starting SSDPlayer, users first choose which FTL to
run. They then have the option of specifying an existing I/O
trace as input, or generating synthetic input with one of the
existing workload generators. During the simulation, users can
adjust the zoom level dynamically, specify breakpoints that
conditionally pause the simulation, and view and save the
detailed device state at any point in the simulation.

SSDPlayer developers.The SSDPlayer Programmer’s
Guide [41] provides a detailed description of the core classes
in SSDPlayer’s code base. This open-source project consists
of approximately 14K lines of code in approximately 200
files. We distinguish between two scales of programming
tasks. Adding a new FTL or feature requires adding or
modifying several class-files, and is considered a large-scale
task. However, extending existing features typically consists
of modifying one or two files, and is considered a small-scale
programming task. We demonstrate the different scales below
by outlining our addition of theHotCold FTL. We refer the
interested reader to the Programmer’s Guide for a complete
documentation of the relevant classes and methods.

Extending base entities.TheHotCold FTL was one of the
first FTLs added to SSDPlayer, and thus it directly extends the
abstract base classes, as depicted in Figure 7.HotColdPage
extends page base entity. It includes a temperature property
and sets the background color accordingly by overriding the
appropriate method.HotColdBlockextends the block entity,
and includes aHotColdPartition property which defines the
partition the block belongs to. We had to override the meth-
ods for getting the block status and frame color to display
according to its partition.

Garbage collection in all of SSDPlayer’s current FTLs is
performed within a single plane. TheHotCold FTL employs

greedy garbage collection within each partition, which is
implemented within theHotColdPlane. The methods in this
class are responsible for allocating an active block within each
partition, and for maintaining the separation of data according
to temperature. This is done by ensuring that valid pages from
the victim block are moved to an active block in the same
partition. There is no specific functionality that had to be
implemented within the chip entity. However, since the base
entities are abstract, we had to create aHotColdChipwhich
aggregates the appropriate planes.HotColdDeviceextends the
device class by adding several FTL-specific properties for
collecting statistics for display.

FTLs are implemented asmanagers, and HotColdSSD-
Manager extends the basic manager class. The manager is
responsible for loading the FTL-specific parameters from the
configuration file and creating the device according to those
parameters.HotColdSSDManageralso provides a special trace
parser,HotColdTraceParser, which extends the basic parser by
handling input lines with temperature tags.

Extending existing features. In addition to the basic
FTL components described above, we opted to extend two
existing features as part of theHotCold FTL. We first add
HotColdWriteAmplificationGetter, which implements the basic
statistics interface. It computes the write amplification within
each partition by accumulating page writes and moves at the
device level. We defined a histogram where the write ampli-
fication for each partition is plotted in a different color. We
then addedHotColdWriteAmplificationGetterto HotColdSSD-
Manager’s list of statistics for display. Next, we extended the
breakpoint base class and defined a new breakpoint type. The
HotColdWriteAmplificationbreakpoint allows users to specify
a write amplification value,W , and a partition,p, so that the
simulation pauses when the write amplification inp reaches
W .

The entireHotColdFTL implementation consists of approx-
imately 900 lines of code, of which 150 handle the additional
statistics and breakpoint types. Clearly, the programming effort
required to add a new FTL or feature depends on its com-



plexity. However, straightforward additions to SSDPlayer’s
functionality are usually limited to several well defined parts
of its code base.

VIII. R ELATED WORK

Scientific visualizationhas been defined as “the transforma-
tion of complex, multidimensional data into informative graph-
ical displays to see the unseen by leveraging what is known
through visual methods.” [6]. Traditional scientific visualiza-
tion tools include graphical representations of numerical data,
such as the scatterplot, the histogram, the boxplot, and the
contour map. Currently, scientific visualization is considered a
field within computer graphics. Research in this field addresses
challenges such as efficient use of advanced hardware, human-
computer interaction, scalable platforms, abstraction models,
or protocol standardization [4], [42]. Some notable examples
of current tools include map animation for earth system
research [5], medical visualization applications of augmented
reality [1], and visualization of three-dimensional nucleic acid
structures [43]. To the best of our knowledge, SSDPlayer is
the first tool designed for visualizing data movement processes
in general, and specifically in SSDs.

Information visualization, or data visualization, “extends
traditional scientific visualization of physical phenomena to
diverse types of information (e.g., text, video, sound, or
photos) from large heterogenous data sources” [44]. It focuses
on representation of “non-visual data” by attaching meaning-
ful geometric or visual encoding [45]. Michael Friendly [2]
surveys the history of data visualization, drawing a line from
early geometric diagrams and maps of the 14th century to
large-scale statistical and graphics software engineering of the
21st century, through notable examples from the 19th century:
Dr John Snow’s dot map that helped identify the water-
borne cause of cholera during its outbreak in London (1855),
Florence Nightingale’s polar area charts (or ‘rose diagrams’),
which motivated the improvement of sanitary conditions in
battlefield treatment (1857), and The Statistical Atlas of the
Ninth US Census (1874).

Current research in information visualization addresses the
representation of very large data sets, such as network graphs,
connections between text documents, and real-time streaming
data, focusing on dynamic and interactive visualization [2],
[44], [45]. The interactive aspect is considered crucial for
visual data exploration, or visual data mining, and includes
interactive linking, filtering, zooming, and projection [3].
SSDPlayer facilitates the pursuit of insight into data movement
processes via visualization, in a dynamic and interactive man-
ner, which is the goal of modern-era information visualization.

An important related challenge is to adapt the visual display
of digital content to the needs of users with various types of
visual impairment. Low vision and color vision deficiencies
(“color blindness”) make it difficult for users to access online
learning material [46], websites [47]–[49] and scientific liter-
ature [50]. Initiatives such as the Web Accessibility Initiative
(WAI) [51] offer resources and guidelines for developers,
while others provide products such as magnifiers and voice

readers [52]. Most of SSDPlayer’s features can be made
accessible by choosing the page and font sizes, as well as
color scheme that best suits each user’s needs.

Many surveys evaluated the effectiveness of visualization
in computer science and mathematical education [53]–[55]. A
graphical representation can help explain the basic concepts
in these fields, which are inherently abstract. Indeed, these
surveys indicate that visualization makes teaching more enjoy-
able, improves student motivation, participation, and learning,
and provides a basis for classroom discussion and interaction
with colleagues. At the same time, several obstacles hinder
the wide adoption of visualization. These mainly consist of
the overheads of identifying effective software, learning new
tools, searching or generating good examples, and adapting
them to the course content [54].

SSDPlayer presents several advantages in this context. It
is distributed with a set of FTLs that represent the major
approaches in SSD design, which can be easily used with
the built-in workload generator or sample traces. The online
demos provide a set of initial examples for both instructors
and students. Finally, it facilitates varying degrees of “active”
learning: none at all, when viewing online demos, moderate,
when choosing simulation parameters and analyzing the illus-
trated outcome, or high, when implementing new features.

IX. CONCLUSIONS

The ever-increasing complexity of modern storage systems
and their management makes it more and more difficult to
analyze underlying processes as well as related new methods
and optimizations. However, while the scope and functionality
of data visualization techniques advance, storage system anal-
ysis continues to rely on traditional basic visualization tools.
Our experience with SSDPlayer demonstrates how visualiza-
tion can contribute to our understanding of data movement
processes on flash. Our experience also indicates that similar
benefits can be obtained by applying data visualization prin-
ciples to almost any other storage system component as well
as to entire systems as a whole.

In addition to the obvious benefit for storage system analysis
and research, our experience revealed additional valuable
benefit of visualizing storage devices. We were able to improve
the quality of our teaching of basic and advanced concepts
by playing short demos in the classroom, and by defining
extensions to the tool as undergraduate project tasks. We also
improved our presentation of research results that consist of
complex ideas and FTL designs by demonstrating them within
SSDPlayer at conferences and meetings with the industry.
Finally, SSDPlayer was the trigger for valuable discussions
with colleagues at these events, where we received feedback
and ideas from the community on how to improve the tool
and to apply it to additional systems and research domains.
Our experience confirms that the well-established benefits of
data visualization can and should be adopted to storage system
research and design.



ACKNOWLEDGMENTS

We thank Or Mauda, Dolev Hadar, and Roee Matsa for their
contributions to SSDPlayer’s functionality and documentation,
and Fabio Margaglia for generating the trace for theLLH-
FTL-MSR demo. We thank Eitan Yaakobi, Assaf Schuster,
Niva Bar-Shimon and Kai Li for their valuable suggestions for
improving SSDPlayer and its appearance, and the anonymous
reviewers for their suggestions that helped improve this paper.
This work was partially supported by GIF grant no. I-1356-
407.6/2016.

REFERENCES

[1] R. T. Azuma, “A survey of augmented reality,”Presence: Teleoperators
and Virtual Environments, vol. 6, no. 4, pp. 355–385, 1997.

[2] M. Friendly, A Brief History of Data Visualization. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 15–56.

[3] D. A. Keim, “Information visualization and visual data mining,”IEEE
Transactions on Visualization and Computer Graphics, vol. 8, no. 1, pp.
1–8, Jan 2002.

[4] R. S. Laramee, H. Carr, M. Chen, H. Hauser, L. Linsen, K. Mueller,
V. Natarajan, H. Obermaier, R. Peikert, and E. Zhang,Future Challenges
and Unsolved Problems in Multi-field Visualization. London: Springer
London, 2014, pp. 205–211.

[5] D. DiBiase, A. M. MacEachren, J. B. Krygier, and C. Reeves, “Anima-
tion and the role of map design in scientific visualization,”Cartography
and Geographic Information Systems, vol. 19, no. 4, pp. 201–214, 1992.

[6] D. A. Griffith, Spatial Autocorrelation and Spatial Filtering: Gaining
Understanding Through Theory and Scientific Visualization. Springer
Science & Business Media, 2013.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,” inUSENIX
Annual Technical Conference (ATC), 2008.

[8] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: Locality-aware sector
translation for NAND flash memory-based storage systems,”SIGOPS
Oper. Syst. Rev., vol. 42, no. 6, pp. 36–42, Oct. 2008.

[9] R. Stoica and A. Ailamaki, “Improving flash write performance by using
update frequency,”Proc. VLDB Endow., vol. 6, no. 9, pp. 733–744, Jul.
2013.

[10] J. Kim, J. Lee, J. Choi, D. Lee, and S. H. Noh, “Improving SSD
reliability with RAID via elastic striping and anywhere parity,” in43rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks DSN, 2013.

[11] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “FlashSim: A simulator
for NAND flash-based solid-state drives,” in1st International Confer-
ence on Advances in System Simulation SIMUL, 2009.

[12] http://www.openssd-project.org/.
[13] SigNAS-II: Siglead NAND Analyzer System, 2nd ed., Siglead Inc.,

September 2012.
[14] http://www.auslogics.com/en/software/disk-defrag-pro/.
[15] http://www.raxco.com/home/products/perfectdisk-pro/.
[16] G. Yadgar, R. Shor, E. Yaakobi, and A. Schuster, “It’s not where your

data is, it’s how it got there,” in7th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage), 2015.

[17] P. Desnoyers, “What systems researchers need to know about NAND
flash,” in 5th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage), 2013.

[18] W. Bux and I. Iliadis, “Performance of greedy garbage collection in
flash-based solid-state drives,”Perform. Eval., vol. 67, no. 11, pp. 1172–
1186, Nov. 2010.

[19] G. Yadgar, E. Yaakobi, and A. Schuster, “Write once, get 50% free:
Saving SSD erase costs using WOM codes,” in13th USENIX Conference
on File and Storage Technologies FAST, 2015.

[20] F. Margaglia, G. Yadgar, E. Yaakobi, Y. Li, A. Schuster, and
A. Brinkmann, “The devil is in the details: Implementing flash page
reuse with WOM codes,” in14th Usenix Conference on File and Storage
Technologies (FAST), 2016.

[21] F. Margaglia and A. Brinkmann, “Improving MLC flash performance
and endurance with extended P/E cycles,” inIEEE 31st Symposium on
Mass Storage Systems and Technologies (MSST), 2015.

[22] X. Luojie, B. M. Kurkoski, and E. Yaakobi, “WOM codes reduce write
amplification in NAND flash memory,” inGLOBECOM, 2012.

[23] S. Odeh and Y. Cassuto, “NAND flash architectures reducing write am-
plification through multi-write codes,” in30th International Conference
on Massive Storage Systems and Technology (MSST), 2014.

[24] E. Yaakobi, A. Yucovich, G. Maor, and G. Yadgar, “When do WOM
codes improve the erasure factor in flash memories?” inIEEE Interna-
tional Symposium on Information Theory ISIT, 2015.

[25] “SNIA IOTTA,” http://iotta.snia.org/traces/388, SNIA, 2014, retrieved:
2014.

[26] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,”Trans. Storage,
vol. 4, no. 3, pp. 10:1–10:23, Nov. 2008.

[27] P. Desnoyers, “Analytic models of SSD write performance,”Trans.
Storage, vol. 10, no. 2, pp. 8:1–8:25, Mar. 2014.

[28] P. Reinecke, G. Barnett, P. Goldsack, and B. Monahan, “GAS: Guess,
abstract, and speculate,” Hewlett Packard Labs, Technical Report HPE-
2017-05, January 2017.

[29] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam, “Lever-
aging value locality in optimizing NAND flash-based SSDs,” in9th
USENIX Conference on File and Storage Technologies (FAST), 2011.

[30] G. Yadgar, M. Factor, and A. Schuster, “Cooperative caching with return
on investment,” in29th IEEE Symposium on Massive Storage Systems
and Technologies (MSST), 2013.

[31] G. Yadgar, M. Factor, K. Li, and A. Schuster, “Management of Mul-
tilevel, Multiclient Cache Hierarchies with Application Hints,”ACM
TOCS, vol. 29, pp. 5:1–5:51, 2011.

[32] A. Aghayev and P. Desnoyers, “Skylight—a window on shingled disk
operation,” in13th USENIX Conference on File and Storage Technolo-
gies FAST, 2015.

[33] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in38th Annual Design
Automation Conference (DAC), 2001.

[34] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi, “Differen-
tial RAID: Rethinking RAID for SSD reliability,”Trans. Storage, vol. 6,
no. 2, pp. 4:1–4:22, Jul. 2010.

[35] J. Colgrove, J. D. Davis, J. Hayes, E. L. Miller, C. Sandvig, R. Sears,
A. Tamches, N. Vachharajani, and F. Wang, “Purity: Building fast,
highly-available enterprise flash storage from commodity components,”
in ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2015.

[36] “Introduction to the EMC XtremIO storage array (ver. 4.0),” EMC,
White Paper H11752.7, April 2015.

[37] K. Greenan, D. D. E. Long, E. L. Miller, T. Schwarz, and A. Wildani,
“Building flexible, fault-tolerant flash-based storage systems,” in5th
Workshop on Hot Topics in System Dependability (HotDep), 2009.

[38] S. Im and D. Shin, “Flash-aware RAID techniques for dependable and
high-performance flash memory SSD,”IEEE Transactions on Comput-
ers, vol. 60, no. 1, pp. 80–92, Jan 2011.

[39] S. Lee, B. Lee, K. Koh, and H. Bahn, “A lifespan-aware reliability
scheme for RAID-based flash storage,” inACM Symposium on Applied
Computing (SAC), 2011.

[40] G. Yadgar, R. Shor, E. Yaakobi, and A. Schuster, “SSDPlayer visualiza-
tion platform version 1.2.1 users guide,” May 2017.

[41] R. Shor, G. Yadgar, O. Mauda, D. Hadar, and R. Matza, “SSDPlayer
visualization platform programmers guide for version 1.2.1,” May 2017.

[42] C. Johnson, “Top scientific visualization research problems,”IEEE
Computer Graphics and Applications, vol. 24, no. 4, pp. 13–17, July
2004.

[43] X. Lu and W. K. Olson, “3DNA: a software package for the analysis, re-
building and visualization of three-dimensional nucleic acid structures,”
Nucleic Acids Research, vol. 31, no. 17, p. 5108, 2003.

[44] J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A. Schur,
and V. Crow, “Visualizing the non-visual: Spatial analysis and inter-
action with information from text documents,” inIEEE Symposium on
Information Visualization (INFOVIS), 1995.

[45] C. Chen, “Information visualization,”Wiley Interdisciplinary Reviews:
Computational Statistics, vol. 2, no. 4, pp. 387–403, 2010.

[46] K. L. Crow, “Four types of disabilities: Their impact on online learning,”
TechTrends, vol. 52, no. 1, pp. 51–55, 2008.

[47] J. Carter and M. Markel, “Web accessibility for people with disabilities:
an introduction for Web developers,”IEEE Transactions on Professional
Communication, vol. 44, no. 4, pp. 225–233, Dec 2001.



[48] H. Takagi, C. Asakawa, K. Fukuda, and J. Maeda, “Accessibility
designer: Visualizing usability for the blind,”SIGACCESS Access.
Comput., no. 77-78, pp. 177–184, Sep. 2003.

[49] L. Jefferson and R. Harvey, “Accommodating color blind computer
users,” in8th International ACM SIGACCESS Conference on Computers
and Accessibility (Assets), 2006, pp. 40–47.

[50] B. Wong, “Points of view: Color blindness,”Nature Methods, vol. 8,
no. 6, p. 441, May 2011.

[51] https://www.w3.org/WAI/.
[52] http://www.abledata.com/.
[53] N. Presmeg,Handbook of Research on the Psychology of Mathematics

Education: Past, Present and Future. Sense Publishers, 2006, ch.
Research on visualization in learning and teaching mathematics, pp.
205–235.

[54] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hund-
hausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J. A.
Velázquez-Iturbide, “Exploring the role of visualization and engagement
in computer science education,” inWorking Group Reports from ITiCSE
on Innovation and Technology in Computer Science Education (ITiCSE-
WGR), 2002.

[55] T. Naps, S. Cooper, B. Koldehofe, C. Leska, G. Rößling, W. Dann,
A. Korhonen, L. Malmi, J. Rantakokko, R. J. Ross, J. Anderson,
R. Fleischer, M. Kuittinen, and M. McNally, “Evaluating the educational
impact of visualization,”SIGCSE Bull., vol. 35, no. 4, pp. 124–136, Jun.
2003.


