
Improving the Performance of Backup Candidate
File Selection using Inode Bitmap

Sosuke Matsui, Tsuyoshi Miyamura, Noriko Tanemura, Terue Watanabe, Norie Iwasaki
Tokyo Software & Systems Development Laboratory

IBM Japan
e34975@jp.ibm.com

Abstract—An incremental backup copies data and metadata
of created, updated, and deleted files since the previous backup.
The performance of finding candidate files for an incremental
backup becomes a limiting factor on the number of files in a
file system. We propose a method for finding backup candidate
files using inode bitmaps as intermediate files to improve the
performance of incremental backups. Our method reduces the
size of intermediate files used by the backup candidate file selec-
tion and efficiently finds deleted files by calculating the bitwise
operation of inode bitmaps. We implemented our method with a
file system backup function supported by IBM Spectrum Scale
(formerly known as the General Parallel File System, GPFS)
4.2, and showed that our method improves the performance of
backup candidate file selection up to 44.5%.

I. INTRODUCTION

Running periodical backups of a file system is important to
prevent loss of business data. In many business environments,
periodical incremental backups are scheduled to reduce the
amount of time for a full backup. An incremental backup
copies created or updated data and metadata since the previous
backup. Deleted data and metadata since the previous backup
are marked inactive so that they will not be copied from
backup media to disk in case of restoration.

There are two steps in an incremental backup process of a
file system: the first step is to traverse the directory structure
and find created, updated, and deleted files and the second step
is to copy data and metadata of the files to backup media such
as tapes. According to previous work, traversing the directory
structure to find candidate files for a backup takes a long time
when the number of files in a file system is large [1], [2].
Therefore, improving the performance of finding the candidate
files is essential, and much work has been done [1]–[3].

One reason it takes a long time to find backup candidate
files is the size of intermediate files. Previous work such as
[2], [3] creates a list of all files in a file system to find deleted
files since the previous backup. The list needs to include the
full path of files and the inode number [3], [4]. For example,
IBM Spectrum Scale (formerly known as the General Parallel
File System, GPFS) supports more than a billion of files per
file system, and the size of the list of all files can become a
few hundred GB. As a result, finding backup candidate files
takes a long time because of reading such a large list.

We propose a method for reducing the size of the in-
termediate file using an inode bitmap, which improves the
performance of the step for finding the backup candidate files.

An inode is an object that stores metadata of a file such as
owner, last access time and file size. An inode bitmap manages
the usage of inodes using a bit array. Our method finds deleted
files by calculating the bitwise operations of inode bitmaps. We
implemented our method with IBM Spectrum Scale 4.2 and
verified that the performance of backup candidate file selection
improved up to 44.5%.

The rest of this paper is organized as follows: in the next
section, we describe related work. In Section 3, we report
a problem with previous backup methods. In Section 4, we
explain our method. We evaluate our method in Section 5 and
finally present our conclusion in Section 6.

II. RELATED WORK

A backup strategy can be categorized as either a logical
or physical backup [5]. On one hand, a physical backup is
a block-based strategy and works efficiently compared with
a logical backup. On the other hand, the weakness of a
physical backup is that a restored storage system needs to
have the same configuration as the original storage system
[5]. A logical backup is a file-based strategy and has more
flexibility compared to a physical backup. For example, a
restored storage system can have a different configuration from
the original system. In many enterprise IT environments, a
restored storage system located at a backup site usually has a
smaller configuration compared with the original system at a
production site. Therefore, our interest is in the logical backup,
and this paper focuses on the file-based strategy.

Patterson et al. proposed a method for efficiently determin-
ing updated data by comparing two snapshots of the NetApp
WAFL file system [1]. However, this method can only be
applied to a physical backup.

Kaplan and Bisson proposed methods for improving the
performance of traversing a directory structure and reading
inodes in a file system [2], [3]. Kaplan’s method is used by
a backup function of IBM Spectrum Scale [4], which is a
logical backup. These methods have a certain effect on the
performance of the step for finding created, updated, and
deleted files. However, they still suffer from a problem in
which the size of intermediate files gets larger as the number
of files in a file system increases. Our method reduces the size
of intermediate files and can be used with their methods.

Fig. 1. Flowchart for finding created, updated, and deleted files

III. OVERVIEW OF THE PREVIOUS WORK AND ITS
PROBLEM

Figure 1 shows the algorithm of the previous work [2] for
finding backup candidate files. There are three steps for finding
the candidate files:

1) File system scan for finding created and updated files.
This step is composed of the following three parts:

a) Traversing directory structure
b) Reading inodes to find created and updated files
c) Writing full path of created and updated files to

file lists
2) Sorting file list
3) Comparing file lists to find deleted files
Previous work such as [2], [3] improves the performance

of steps a) and b) for finding created, updated, and deleted
files. However, the previous work still suffers from a problem
in which the performance for finding backup candidate files
degrades as the number of files in the file system increases
because of the size of the intermediate file. In the next
section, we explain the algorithm of the previous work and
its problems.

A. Overview of the Previous Work

First, a file system is scanned using a previous backup
time as input to find files that have been created or updated
since the last backup. Specifically, the directory structure is
traversed, and the ctime and mtime of files are read from
inodes. The ctime and mtime are compared with the previous
backup timestamp, and if the ctime or mtime is newer than
the timestamp, the inode number and full path of the file

are written to a list of created and updated files. In addition,
regardless of the result of the timestamp comparison with the
ctime and mtime, the inode number and full path of a file is
written to another file list that is a list of all files in the file
system.

Then, the list of all files is sorted by inode number. The
sorted list of all files will be used by the further processing
and also by the next incremental backup.

Last, the sorted list of all files created by this backup and
the previous one is compared by inode numbers. If a file that
existed at the previous backup time but that does not exist now
is found, the inode number and full path of the file is written
to a list of deleted files.

All the created, updated, and deleted files since the previous
backup will be found by the three steps described above. Once
these steps are complete, the data of created and updated
files are copied to backup media. Deleted files are marked
as inactive so that they are not copied from backup media
to disks when a restoration is performed. For example, IBM
Spectrum Protect (formally known as Tivoli Storage Manager)
reads a list of deleted files and stores them in a database so
that they will not be restored [4].

B. Problem with the Previous Work

The previous work generates lists of all files created by the
last and the current backup to find deleted files. As the number
of files in a file system becomes larger, the size of the lists
gets bigger, and backup candidate file selection takes a long
time.

Spectrum Scale supports file system scanning with 10
billion files in a file system [6]. If the average length of a file
path is 64 bytes, the size of the list of all files will become 640
GB. In such an environment, the list of all files will not likely
reside in cache memory. As a result, file system scanning and
list sorting require access to disks to read and write the 640
GB list.

Reducing the size of intermediate files is important for
solving this problem. However, using compression techniques
like zip cannot solve this problem because the size of the
compressed list still varies depending on the number of files in
the file system. To completely solve this problem, formatting
the intermediate files independently from the number of files
in a file system is preferable.

IV. PROPOSED METHOD

A bit array is frequently used to represent a set of numbers
in a specific range [7]. Well known file systems such as ext4
assign a unique ID called an inode number to a file which is
in a certain range. Usage of inode numbers are managed by
a data structure called the inode bitmap. Our method writes
the content of an inode bitmap to a file and uses it as an
intermediate file to find backup candidate files. Therefore, our
method solves the problem in which finding backup candidate
files takes a long time because of the size of the intermediate
file. However, finding deleted files just by using inode bitmaps

Format of interme-
diate file

Size of intermedi-
ate file

Time to create in-
termediate file

File List 640 GB 21629.0 seconds
Inode Bitmap 1.25 GB 42.4 seconds

TABLE I
COMPARISON OF FILE LIST AND INODE BITMAP

is impossible. We propose a method for calculating the bitwise
operation of inode bitmaps to find deleted files.

In this section, we explain our method in detail and its
expected result.

A. Core Idea of the Proposed Method

As described in the previous section, an inode bitmap is
a data structure that manages the usage of inode numbers.
When a file system assigns an inode number to an inode, the
corresponding bit is set.

If a file system supports up to 10 billion files, the usage
of an inode number can be managed by 10 billion bits.
Therefore, the size of the inode bitmap of the file system will
be 1.25 GB. Compared to the previous work, the size of the
intermediate file becomes smaller by storing the content of
the inode bitmap in the intermediate file. As a result, the time
for reading and writing the intermediate files can be reduced.
In addition, the size of the inode bitmap depends only on the
maximum number of files supported by a file system. Usually,
the maximum number of files in a file system is determined on
creation of a file system. That is, the size of the inode bitmap
is constant and does not vary depending on the number of files
in a file system.

To investigate the effect of using the inode bitmap as an
intermediate file, we compared the time to write a list of file
paths and the inode bitmap to a file on a Linux server with
16 GB of memory installed. We installed Redhat Enterprise
Linux 6.5 and Spectrum Scale 4.2 in the test environment.

We measured the time to create a list of 10 billion files
and the time to write 10 billion bits of the inode bitmap to a
file. During our test, the average file path length of test files
was set to 64 bytes. Table I shows the result. By writing the
content of the inode bitmap to a file instead of writing a list of
file paths, the time to create the intermediate file was reduced
by about 5 hours and 59 minutes.

B. Overview of the Proposed Method

Figure 2 shows a flowchart for finding backup candidate
files by our method.

First, the file system scan creates a list of files that have been
created or updated since the previous backup. We use the same
technique as the previous work [2] to traverse the dirertctory
structure and read inodes. The file system scan writes the inode
bitmap (hereinafter referred to as new inode bitmap) to a file
and uses it as an intermediate file for finding candidate files.
As a result, the size of the intermediate file gets reduced.

Then, we read the inode bitmap of the previous backup
(hereinafter referred to as old inode bitmap) from a file and
calculate the inode bitmap of deleted files by comparing the

Fig. 2. Flowchart for finding created, updated, and deleted files by our method

Fig. 3. Calculating an inode bitmap of deleted files

new and the old inode bitmaps. As shown in Figure 3, there
are four conditions depending on values set to a particular bit
in the new and the old inode bitmaps.

”0” is set to both the old and the new inode bitmaps
A file with this inode number did not exist at the
previous backup time and does not exist now. We
set ”0” to the inode bitmap of deleted files.

”0” is set to the old and ”1” is set to the new inode bitmap
A file with this inode number did not exist at the
previous backup time but exists now. Therefore, the
file was newly created. We set ”0” to the inode
bitmap of deleted files.

”1” is set to the old and ”0” is set to the new inode bitmap
A file with this inode number existed at the previous
backup time but does not exist now. Therefore, the
file was deleted. We set ”1” to the inode bitmap of
deleted files.

”1” is set to the old and the new inode bitmaps
A file with this inode number existed at the previous
backup time and still exists now. There are three
possible situations in this case: a file may not have
been updated since the previous backup time, the file
may have been updated, or the file may have been
deleted and created with the same inode number. If

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0 2000 4000 6000 8000 10000

Im
pr

ov
em

en
t R

at
e

of
 T

im
e

fo
r

F
in

di
ng

 B
ac

ku
p

C
an

di
da

te
 F

ile
s

[%
]

Number of Files [thousand]

0.1% of files are updated
1% of files are updated

10% of files are updated

Fig. 4. Improvement rate of time for finding backup candidate files when
average file path length is 64 bytes

the file has not been updated or has been updated,
that means the file has not been deleted. If the file
has been deleted and created with the same inode
number, the file will be included in the list of created
and updated files. Therefore, the file data will be
copied to backup media, and this file does not need
to be deleted. We set ”0” to the inode bitmap of
deleted files.

For example, in Figure 3, the third bit from the right is
”1” in the old inode bitmap and ”0” in the new inode bitmap.
Therefore, we assume this inode has been deleted since the
previous backup and does not exist now. As a result, ”1” is
set to this inode in the inode bitmap of deleted files.

The inode bitmap of deleted files D can be calculated by

D = O ∧ (¬N) (1)

where O is the old and N is the new inode bitmap. We
reference the inode bitmap of deleted files and mark those files
as deleted so that they will not be restored. For example, if
we use IBM Spectrum Protect as backup and restore software,
we look up a file from an inode number of deleted files and
mark them as deleted. Created and updated files are copied to
backup media by referencing the list of created and updated
files.

V. EVALUATION

We implemented our method with the Scalable Backup and
Restore (SOBAR) function supported by Spectrum Scale 4.2
and evaluated the performance of the previous work [2] and
our method in the test environment described in Section IV-A.
SOBAR is a backup function of a file system with Hierarchical
Storage Management (HSM) enabled [8]. HSM continuously
copies files stored in disks to tapes. When the SOBAR is
used, it assumes file data are already backed up by HSM and
creates a backup of inodes and the directory structure of the file
system. By taking a backup of inodes and directory structures

-20

 0

 20

 40

 60

 80

 0 2000 4000 6000 8000 10000

Im
pr

ov
em

en
t R

at
e

of
 T

im
e

fo
r

F
in

di
ng

 B
ac

ku
p

C
an

di
da

te
 F

ile
s

[%
]

Number of Files [thousand]

0.1% of files are updated
1% of files are updated

10% of files are updated

Fig. 5. Improvement rate of time for finding backup candidate files when
average file path length is 128 bytes

without copying file data, SOBAR works efficiently compared
to existing backup methods.

Since SOBAR skips copying file data to backup media,
the step for finding backup candidate files takes up the most
amount of time during an incremental backup. Therefore,
improving the performance of backup candidate file selection
is important. For example, during our tests, the maximum size
of inodes and directory structures was 3.6 GB. The amount of
time for taking a backup of inodes and directory structures can
be estimated at 10 seconds using the IBM TS1150 tape drive
whose maximum data transfer rate is 360 MB/sec [9]. Since
the maximum amount of time for finding backup candidate
files was 529 seconds, the step for backup candidate file
selection took up 98.8% of the time during an incremental
backup.

Because of the limitation of our test environment, we
created up to ten million files in a file system and measured
the performance of a backup by the previous work and our
methods. In a high performance computing environment, 70%
of files had a 64 to 128 byte file path length [10]. Therefore,
we created files with 64 and 128 byte file path lengths and used
them as test data. Then, we measured the time to find backup
candidate files while updating 0.1%, 1%, and 10% of files in
the file system. Figure 4 and 5 show our test results. With a
128 byte file path length, when 0.1% of files are updated, the
performance of finding backup candidate files improved up to
44.5%.

Finally, when the number of files in a file system is small,
we found that the size of the intermediate file is smaller when
using the previous work compared to the size of the file using
our method. As a result, the previous work showed better
performance. For example, with a 64 byte file path length,
when there are 50,000 files in a file system and 1% of files
are updated, the previous work is faster by 70.8% compared
to our method. However, with 50,000 files in a file system, our
method took just a few seconds longer time than the previous
work because a backup completes in a few seconds.

VI. CONCLUSION AND FUTURE WORK

We focused on the fact that the size of intermediate files
gets larger as the number of files in a file system grows
and proposed a method to write an inode bitmap to a file
and use it as an intermediate file of a backup to improve
the performance of incremental backups. We use a bitwise
operation of two inode bitmaps to find deleted files since the
previous backup. Our method is implemented with a backup
function called SOBAR, and we verified that the performance
of backup candidate file selection improved up to 44.5% in
our test environment.

Next, we will test our method with 10 billion files and
compare its performance with the previous work.

REFERENCES

[1] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and
S. Owara, “Snapmirror: File-system-based asynchronous mirroring for
disaster recovery,” in Proceedings of the 1st USENIX Conference on File
and Storage Technologies, ser. FAST ’02. USENIX Association, 2002.

[2] M. A. Kaplan and W. A. Sawdon, “Scalable file management for a
shared file system,” 2012, US Patent 8,892,531.

[3] T. Bisson, Y. Patel, and S. Pasupathy, “Designing a fast file system
crawler with incremental differencing,” SIGOPS Oper. Syst. Rev., vol. 46,
no. 3, pp. 11–19, Dec. 2012.

[4] IBM Knowledge Center, “Tuning backups with the mmbackup com-
mand,” http://www-01.ibm.com/support/knowledgecenter/SSFKCN 4.
1.0/com.ibm.cluster.gpfs.v4r1.gpfs100.doc/bl1adm backuptuning.htm.

[5] N. C. Hutchinson, S. Manley, M. Federwisch, G. Harris, D. Hitz,
S. Kleiman, and S. O’Malley, “Logical vs. physical file system backup,”
in Proceedings of the Third Symposium on Operating Systems Design
and Implementation, ser. OSDI ’99. USENIX Association, 1999, pp.
239–249.

[6] R. F. Freitas, J. Slember, W. Sawdon, and L. Chiu, “GPFS scans 10
billion files in 43 minutes,” IBM Research, Tech. Rep., 2011.

[7] J. Bentley, Programming Pearls (2nd Edition). Addison-Wesley Pro-
fessional, 1999.

[8] IBM Knowledge Center, “Scale out backup and restore (SO-
BAR),” http://www-01.ibm.com/support/knowledgecenter/SSFKCN 4.
1.0/com.ibm.cluster.gpfs.v4r1.gpfs100.doc/bl1adm sobar.htm.

[9] IBM Knowledge Center, “3592 tape drives,” https://www.ibm.com/
support/knowledgecenter/en/STQRQ9/com.ibm.storage.ts4500.doc/
ts4500 ipg drives 3592.html.

[10] Y. Wang, “A statistical study for file system meta data on high perfor-
mance computing sites,” 2012.

