FGDEFRAG: A Fine-Grained Defragmentation Approach to Improve Restore
Performance

Yujuan Tarf, Jian Wenri, Zhichao Yar, Hong Jiand, Witawas Srisa-ah Baiping Wang, Hao Lud

*College of Computer Science, Chongqing University, China
Email: tanyujuan@gmail.com, b615350236@gmail.com, wbpbox@live.com

TUniversity of Texas Arlington, Email: yanzhichao.hust@gmail.com, hong.jiang@uta.edu
y
*University of Nebraska Lincoln, Email:witty@cse.unl.edu
SNimble Storage, Email:hluo@cse.unl.edu

Abstract are each uniquely “fingerprinted” [13] to identify chunk-

In deduplication-based backup systems, the removdevel data redundancy. A chunk fingerprint is generated
of redundant data transforms the otherwise logicallyby a secure hash algorithm [11] according to the
adjacent data chunks into physically scattered chunksontent in that chunk. If two fingerprints of two chunks
on the disks. This, in effect, changes the retrievalgenerated by applying the same hash algorithm are
operations from sequential to random and significantidentical, they are regarded as duplicate, or redundant
ly degrades the performance of restoring data. Thesehunks and only one instance is stored; the other
scattered chunks are callééhgmented dataand many chunk is then replaced by an address pointer to the
techniques have been proposed to identify and sequestored instance. In backup systems, the incrementally
tially rewrite such fragmented data to new address areaghanging nature of the data streams leads to a very
trading off the increased storage space for reducetligh compression ratio, typically from 10x to 100x
number of random reads (disk seeks) to improve thesince a large percentage of the data is redundant among
restore performance. However, existing solutions fordifferent backup versions.
backup workloads share a common assumption that While data deduplication significantly increases stor-
every read operation involves a large fixed-size windowage space efficiency, it also substantially complicates
of contiguous chunks, which restricts the fragmentthe post-deduplication storage management [14], [4].
identification to a fixed-size read window. This can For example, due to the removal of redundant chunks,
lead to inaccurate detections due to false positives sincghe logically adjacent data chunks that belong to a
the data fragments can vary in size and appear in angpecific file or data stream are scattered in different
different and unpredictable address locations. places on disks, transforming the retrieval operations

Based on these observations, we proposeDEG of such files or data streams from sequential to random.
FRAG, a Fine-Grained defragmentation approach thatThis significantly increases the retrieval time because
uses variable-sized and adaptively located data groupsf the extra disk seeks, with the worst case of one seek
instead of using fixed-size read windows, to accurateper chunk.
ly identify and effectively remove fragmented data. Fig. 1 illustrates this problem with a simple but
When we compare its performance to those of existingntuitive example. In Fig. 1, FileA and file A’ share
solutions, F®EFRAG not only reduces the amount the common chuniC. When file A’ enters the backup
of rewritten data but also significantly improves the system after file, only chunksE andF of file A’ would
restore performance. Our experimental results showe stored since chunk is already stored by file,
that FGEFRAG can improve the restore performance and thus chunk is stored separately (non-sequentially)
by 19% to 262%, while simultaneously reducing the from chunksE and F. Thus reading fileh’ requires at

rewritten data by 29% to 70%. least two disk seeks, one for chuikand another for
chunkskE and F. Generally, we call a chunk such as
|. Introduction chunkC as fragmented data of fil&'". If chunkC is not

large enough to amortize the extra disk seek overhead,
Data deduplication is a lossless compression technologthis fragmentation problem can result in excessive disk
that has been widely used in backup [19], [8], [1], seeks and lead to poor restore performance that can
[17] and archival systems [12], [18], [2]. It breaks data degrade the recovery time objective (RTO). RTO is a
streams into approximately equal-sized data chunks thatery important performance metric for any customers

File A File A’ windows where the split parts in each neighborhood

‘Chl‘}"‘k Ché"‘k Chg“k ‘Ch;:“‘k Chg“k Ch;"‘k fail to meet the threshold. Clearly, in both cases this
group of closely stored reference chunks would be
File A and File A” stored on disks identified as fragmented data when they actually are
Chunk Chunk | Chunk | Chunk g .

B 1 b E F not, thus resulting in false positive identification. These

stored by stored by false positive detections can lead to rewriting more

File A File A’ fragmental chunks but without substantially improving

Fig. 1: An example of fragmented data. the restore performance.

Based on these aforementioned analysis and obser-
vations, we propose F&EFRAG, a Fine-Grained de-
who buy backup products. fragmentation approach to improve restore performance

The fragmentation problem in deduplication-basedin deduplication-based backup systems. The main idea
backup systems has been identified and studied to and salient feature of FI®FRAG is to use variable-
certain extent by both industry and academia [3],sized and adaptively located groups, instead of the fixed-
[71, [5], [9], [10], [6]. To restore a backup stream, size windows in the existing approaches, to identify
all these existing approaches have made a commorfiragmented data and atomically read data for data
fundamental assumption that each read operation inrestores Specifically, F®EFRAG first divides the data
volves a large fixed number of contiguous chunks withstream into variable-sized logical groups based on the
a single disk seek. With this assumption, the disk seelon-disk store address affinity of the referenced chunks,
time is sufficiently amortized to become negligible for i.e., contiguous and/or close-by referenced chunks are
each data read operation, and the read performance ggouped into the same group and far-apart chunks are
determined by the percentage of referenced chunks peseparated into different groups. Then for each logical
read in each backup stream. That is, existing approachegoup, it identifies fragmented data by comparing the
identify fragmented data based on the percentage ofalid read bandwidth defined to be the total data
the referenced chunks in each fixed-size window (i.e.yolume of the referenced chunks of this group divided
the size of the read data). If the percentage of theby the time spent reading the entire group (referenced
referenced chunks is smaller than a preset thresholdind non-referenced chunks) and doing disk seek, to a
these referenced chunks will be identified as fragmentegreset bandwidth threshold. If it is smaller than the
data and rewritten to be with the unique chunks of thethreshold, the corresponding referenced chunks will be
same data stream to make future reads more sequenti@entified as fragmental chunks. Finally, BE&FRAG
trading off the increased storage space for a reducedrganizes the fragmental chunks and the new unique
number of reads (disk seeks) in the restore procesthunks of the same backup stream into variable sized
Taking Fig. 1 for example, chun® may be rewritten to physical groups and writes them to disks in batches.
be with chunksE andF for File A’ to read them more In data restores, the variable sized physical and logical
sequentially. groups are each read atomically.

Unfortunately, while the existing approaches can When we compare its performance to those of the
improve the data restore/read performance by identifyexisting approaches, FfEFRAG has two unique ad-
ing and rewriting the fragmental chunks, they fail to vantages. First, FGEFRAG identifies the fragmented
accurately identify and effectively remove data frag-data based on the variable-sized groups and the measure
mentation. More specifically, since the amount of dataof valid read bandwidth of the referenced chunk for
involved in each read in the existing approaches iseach group, enabling it to accurately identify fragmental
assumed to be a fixed-size unit, the identification ofchunks and only rewrite a minimal number of redundant
fragmented data is restricted within a fixed-size windowdata chunks with increased spatial locality to improve
(i.e., the size of the read data). But in reality, fragmentedhe restore performance. Second, BHBRAG reads
data vary in size and can appear in different, unprevariable-sized groups based on the address affinity of
dictable address locations. Detecting fragmented dateeferenced chunks, rather than reading a fixed large
in a fixed-size window can restrict the size and locationnumber of chunks each time regardless of the disk
of the fragmented data that can be identified and causaddresses of the referenced and non-referenced chunks,
many false positive detections. enabling it to accurately locate and read the referenced

Consider, for example, a group of referenced chunkshunks with fewer disk seeks and a smaller amount
stored sufficiently close to one another that they eitheof data to improve the data restore performance. Our
reside in a single read window but fail to meet the preseexperimental results show that B&FRAG can achieve
percentage threshold of referenced chunks, or meed restore performance improvement between 19% to
the threshold but are split into two neighboring read262% while simultaneously reducing the amount of

rewritten data by 29% to 70%, when compared to thaM‘“"‘“‘1

D\F\F\c\u\l\J\K\L\M\
existing defragmentation approaches. [N]o Q[r[s]T]
The rest of this paper is organized as follows. Section ™ *s e a1 3y Wi x v Z 0T 0Q)

Il describes the related work and our observations to
motivate the FGEFRAG. The design and implemen-
tation are detailed in Section lll. Section IV evaluates
FGDEFRAG and Section V concludes the paper.

—

F -mnn M N[®

U w z 1 \

—«—— Container 5 Container 6 —|

(a) Data object 1 and data object 2 stored on dlsks wnhout any dcfragmentatmn algorithm
Ci iner 1

(b) Data object 1 and data object 2 stored on dlsks bw HAR algorithm
C i 1

[A[BTCID[E \ i J K\LC\M.\}N (5]
. . [P [0 C
II' Ba‘Ckgr Ound and M Otlvatlon (Cgonltail:er‘éls ‘—TNL‘ VCt‘mt:?mlrS ‘—W» = Y(onZ‘IInchﬁ) —Qv

¢) Data ob]ecl 1 and data object 2 stored on dlsks by CAP algorithm

For a given backup stream, fragmented data that ar 1 c 3 Container 3
i i i ClDJE GH [L[K[L[M[N[O
stored separately from its unique chunks, requires ma D e F T R KT L M
more disk seeks to restore them than if they were cﬂntamer4 ———— Container 5
Stored Sequentla”y Wlth the Unlque Chunks In thIS (d)Dalaoh_]ectlanddatanbjnctlstorcdnndisksbyCBRalgorithm
(1 Container 2 i C

tation approaches to help understand how they identi e TS remrrm
and remove the fragmental redundant chunks, and then.

F|g 2: An example of different data layouts on disks in
analyze their common problems and present our Obseemstmg solutions for backup workloads. Note that gray-

vations to motivate FGEFRAG approach. out chunks indicate the redundant chunks.

Container 4

A. Related Work on Defragmentation

In general, all existing defragmentation solutions for containers and sparse containers. An out-of-order con-
backup workloads define and quantify fragmented datdainer is accessed intermittently and frequently during
based on the percentage of the data that belongs to @ restore, leading to degraded data read performance
given backup stream contained in a fixed-size atomidecause of repeated disk accesses in a short period
read operation. We use an example shown in Fig. 2 t®f time. This out-of-order container-induced problem
help illustrate the main ideas of the existing approachess amenable to a cache-based solution because of the

In Fig. 2, there are two data objects, data objecthigh temporal access locality of this type of containers
1 with 20 chunks and data object 2 with 13 chunks.and thus can be solved by employing powerful cache
Data object 1 and data object 2 share 7 commorieplacement algorithms, such as Assembly Area used
chunks,B, C, H, I, J, O, and Q. All the chunks are in CAP [7], OPT used in HAR [3], and LFK [6]. A
stored in fixed-size containers of five chunks each orsparse container is one for which the percentage of the
disks. For dataobject 1, all of its chunks are stored referenced chunks is smaller than a preset threshold
sequentially in the first 4 containers. But for datsjiect ~ that indicates an insufficient amount of valid data in
2, without applying any defragmentation approacheseach read of the container. For example, in Fig. 2,
its unique chunks are stored sequentially in the nexif data object 2 represents a backup stream and the
two containers, 5 and 6, while its redundant (duplicate)threshold is set to be 50%, the three containers, 1, 3
chunks are stored separately via address pointers amomgd 4, are regarded as sparse containers. HAR rewrites
the first 4 containers initiated by dahject 1 as shown the referenced chunks in these sparse contaigers,
in Fig. 2(a). In this case, while no duplicate chunks areO and Q, to containers 5 and 6, to be stored among
stored, it would require reading all 6 containers (1-6, 6the unique chunks of databject 2 as shown in Fig.
disk accesses) to restore dataiect 2 assuming that a 2(b). Thus, with HAR, one only needs to read three
container is the atomic read unit. When applying anycontainers, 2, 5 and 6, to restore datgect 2 at the
of the defragmentation approaches, however, some dfost of storing 4 duplicate chuni& C, O andQ.
the redundant chunks is identified as fragmented data 2) CAP: The capping algorithm (CAP) [7] also
and rewritten to containers 5 and 6, to be stored alongissumes that each atomic read involves a fixed-size
with the unique chunks of databject 2 as shown in container and identifies fragmented data according to
Figures 2(b), 2(c), and 2(d). Next we describe some othe number of containers that are referenced by a fixed-
the state-of-the-art defragmentation approaches. size segment in a backup stream, where a fixed-size

1) HAR: The history rewriting algorithm (HAR) [3] segment is a small part in a backup stream that is
uses a 4MB container as the atomic unit for datacomposed of a fixed number of contiguous chunks. For
read operations and classifies the fragmented data inta segment, if the number of the referenced containers is
two categories based on container types, out-of-ordelarger than a preset integer M, CAP would select the top

M containers that contain the most referenced chunks aduce the data fragmentation for backup workloads.
non-fragmental containers, and correspondingly, the reThe metric is calculated based on how many
maining containers that contain fewer referenced chunksontainers that are referenced by a backup stream,
are then identified as fragmental containers and theiwhich is similar to CAP.
referenced chunks are organized to be rewritten to new
containers sequentially with the unique chunks. AgainB. Motivation
taking Fig. 2 as an example, if datbject 2representsa Qur review of existing defragmentation solutions
data segment and the intedéris 2, CAP identifies the for backup workloads reveals a common, fundamental
two referenced containers, 3 and 4 that have only on@ssumption they share; that is, each read operation
referenced chunk each, as fragmental containers. Thg the restore process involves a large fixed number
referenced chunks in these two fragmental containerssf contiguous chunks. The main rationale for this
O and Q, are then rewritten to containers 5 and 6, asassumption is to amortize the disk seek time with a long
shown in Fig. 2(c). Note that, with CAP, four containers, data transfer time in the read operation. However, when
1,2, 5 and 6, need to be read to restore @dfct 2 restoring a backup stream, the effective data restore
but at a lower redundancy cost than HAR, storing onlyperformance is determined not only by the total amount
two duplicate chunksQ and Q. of time but also by the percentage of the referenced
3) CBR: The context-based rewriting algorithm chunks per read. Thus, existing approaches identify
(CBR) [5] uses a measure called Rewrite Utility to the fragmented data based on the percentage of the
decide whether a given referenced chunk isreferenced chunks in each fixed-size window (i.e., the
fragmented data, which is different from CAP and size of the read data) and rewrite the fragmented data to
HAR that identify an entire group of referenced be among the unique chunks of the same data stream to
chunks as fragmented data. Rewrite Utility is definedimprove data restore performance, trading off increased
to be the size of the chunks that are in the diskstorage space for reduced number of reads (disk seeks)
context but not in the stream context divided by thein the restore process. Ideally, the additional storage
size of the chunks in the disk context. Disk context, inspace for storing the duplicate chunks identified as
this case, is defined as a set of chunks following thefragmented data should be as small as possible while
decision chunk on disk, and stream context is definedhe number of disk seeks is kept at a minimum. This
as a set of chunks following the decision chunk in theclearly requires the detection of fragmented data to be
backup stream, where the decision chunk is defined thighly accurate and efficient. Unfortunately, fragments
be a chunk that will be identified as a fragmentaldetection based on using fixed-size read windows in
chunks or non-fragmental chunk in the near future.existing defragmentation approaches for backup work-
Both of the stream context and disk context are ofloads could be very inaccurate.
fixed sizes, and the size of the disk context is just the For a given backup stream, the referenced chunks can
size of the data volume read in each atomic readbe grouped into different data regions naturally based
operation, always setting to 2MB empirically. For a on their on-disk store address proximity and affinity,
decision chunk, if the Rewrite Utility is higher than a j.e., contiguous or closely-located referenced chunks are
preset minimal value, this chunk will be regarded as agrouped into the same region and far-apart chunks are
fragmental chunk. For the example in Fig. 2, if the separated into different regions, resulting in regions of
stream context is the 10 chunks following the decisiondifferent sizes. Taking Fig. 2 for example, churikand
chunk and the disk context is five chunks following C can be grouped into the same region with a size of
the decision chunk, and the minimal value is set to bewo chunks, while chunks, H, andl can be grouped
75%, the four referenced chunks by dafbject 2 B, together into a region with a size of three chunks. Thus,
C, O andQ, would be regarded as fragmental chunks,for a given data region, the disk seek time accounts for a
since their Rewrite Utility are 80% or 100%, higher different percentage of the total reading time depending
than 75%. These fragmental chunks would beon the size of the region, making the disk-seek overhead
rewritten to containers 5 and 6 along with the uniquedifferent for a differently-sized region. That is, a larger
chunks of databbject 2 shown in Fig. 2(d). region would result in a lower the disk-seek overhead,
4) Other approaches:HAR, CAP and CBR, are and vice versa. Therefore, treating all redundant chunks
three prominent defragmentation solutions forequally by grouping them into fixed-size window to
deduplication-based backup systems. In additionjdentify the fragmental chunks and atomically read data
iDedud15] is a dynamic defragmentation solution for for data restores, like fixed-size containers in HAR and
primary storage workloads. Nam et al. [9] use aCAP and fixed-size disk context in CBR, would surely
guantitative metric to measure the fragmentation levekesult in a mis-opportunity to explore and exploit the
and propose a selective deduplication scheme[10] taddress affinity of these redundant chunks of the data

stream to optimize the restore/read performance. These Backup Stream

. e T T Backup o] Restore
observations motivate us to propose BE-RAG to use [RAM 3
variable-sized and adaptively located data regions based | !
on address affinity, instead of the fixed-size regions ¢
of the existing approaches, for both identifying and (D Data Grouping

removing fragmented data and atomically reading data

+
X . (@ Fragment Identification
during data restores, to optimize the restore performance

in deduplication-based backup systems. ! 1 Group Pool - !
i Fingerprint Index # |
i Table roup St(lre ;
Ill. FGDEFRAG Approach o -_‘f 77 e

In this section, we first present B&FRAGS architec- Fig. 3: FGDEFRAG's Architecture.

ture and then describe the design of its key functional

1) The Grouping Processkor each backup stream,
components.

data grouping is carried out in two steps.
. . In the first step, the backup stream is divided into
A. Architectural Overview large fixed-size segments [7] and the redundant chunks

FGDEFRAG is composed of three key functional in each segment is sorted according to their on-disk

components: data grouping, fragment identification, andtddresses. In our current design, each segment is set to
group store. Fig. 3 shows its architecture and criticalP® 16MB by default. The redundant chunks and their on-

data path. Data grouping divides the referenced redisk addresses are identified by searching the fingerprint

dundant chunks of each backup stream into variable®f €ach chunk in the fingerprint index table. A hit in
sized logical groups according to their on-disk addressel’€ table means that the decision chunk is a redundant
affinity, where the redundant chunks and their on-diskchunk and an identical chunk has already been stored
addresses are found by inquiring the fingerprint index°" the disks; otherwise, the chunk is unique. .
table. After logical groups are identified and generated, N the second step, the sorted redundant chunks in
the fragment identification component examines eactfach segment are divided into variable-sized logical
group to determine whether its references to redundarfi"oUPs according to their address affinity, i.e., contigu-
chunks are fragmented data by measuring the valid rea@US and/or closely-located chunks are grouped into the
bandwidth. If the valid read bandwidth is smaller thanS@Me group and far-apart chunks are separated into

a preset threshold, the corresponding referenced chuniéifférent groups, where each logical group starts and

are identified as fragmental chunks. Finally, the groupe”ds with a redundant chunk. Note that, if the redundant

store component organizes the fragmental chunks angunks in one logical group are not contiguous, it
the unigue chunks of each backup stream into variabl§an contain some non-referenced chunks (i.e., chunks
sized physical groups and writes them to the group poof!®t Pelonging to the segment being processed) in the
on the disk, where a group table is used to store th&@ddress space. .

start and end addresses of each physical group for future Fi9- 4 illustrates the data grouping process for a
group retrieval. To restore a backup stream DEGRAG segment. Fig. 4(a).shows the original sequence of the
uses a group cache that is able to integrate any appropfigdundant chunks in the segment and Fig. 4(b) shows
ate cache replacement algorithm to improve the restor1€S€ redundant chunks sorted in ascending order of

speed. Next, we describe these three components affgélr addresses, the result of Step 1. After Step 2 of
iilustrate how F®EFRAG identifies and removes the e process, Fig. 4(c) shows the three logical groups
fragmented data. formed according to their address affinity.

2) The Group Gap:A critical issue for data group-
ing is how to determine quantitatively whether two
redundant chunks in a certain proximity are either close

Data grouping focuses on the referenced redunenough to be in the same logical group or sufficiently far
dant chunks within each backup stream. Because thapart to be separated into two different logical groups.
fragmented data is caused by the redundant chunki§ two chunks are far away from each other, i.e., they
being stored separately from the unique chunks, itare separated by many non-referenced chunks in an
requires multiple extra disk seeks for restoration. Weaddress space, but are placed in the same logical group,
next describe the grouping process for the redundarthe relatively high percentage of non-referenced chunks
chunks and show a critical factor, callgcbup gapthat in the group would significantly affect the fragment
affects the data grouping efficiency. identification in a negative way. Taking the case in Fig.

B. Data Grouping

(a) The cériginall sequ;nce of the redundant chunks in the segment the g rou p’ anw the tOta| S|Ze Of the non_referenced

A B F ‘ G ‘ H ‘ K ‘) ‘ Q ‘ P ‘ J ‘ . " . ;
l(:{]l 10]33 l({:% 11(1/(1)6 111)\?2 1009 | 1010 | 1052 | 1056 | 1015 | 1017 | 1016 1055\ ChunkS in the group (leX+y is the total size Of
WIS 100710573030 ool the logical group). Note that the denominatot, XY,
(b) The sorted list of the redundant chunks in the segment \\‘ on the |eft hand Slde Of the |nequa||ty represents the
A B C D E F ‘ G ‘ H ‘ I ‘ J ‘ K L M \
100t | 1002 1003 1006 1007 | 1000 | oto | 1052 | tose | ross | use | 1057 | r0sy] total time required to read the entire logical group,
161 | 1081 | 1082 | 1083 | 1084 /,i\cdl:iunk including the disk seek time, and the whole expression,
- , X represents the effective bandwidth of reading
(¢) The logical groups in the segment _ L t+ 5) .))
Lot Loz 13l | Liovsliaor] L oo | sg] Losicat eroup 1 all the referenced data during this time, or thelid
PP (] Logies read bandwidtras mentioned earlier. The expression on
1052 1054 | 1055 | 1056 | 1057 1059 1061 ogical group 2 1
Ol P QR) the right hand side of the inequalitg- 5, represents
_ _ the bandwidth thresholda given fraction of the full
Fig. 4: An example of the data grouping process. disk bandwidthB. In other words,a logical group

_] _ is considered afragmental groupand its referenced
4(c) as an example, if churii in group 2 were instead chynks regarded asagmental chunks the valid read
included in group 1, 42 non-referenced chunks betweepangwidth is smaller than the bandwidth threshold.
chunk G (address 1010) and churtk (address 1052) Thijs formula enables FEEFRAG to accurately identify
would be added to group 1, causing group 1 to behe fragmented data because it strictly follows the
identified as a fragmental group with a much highergata reading process, including the disk seek and data

probability than when chunki is in group 2, since the (eading, to calculate the valid read bandwidth of the
referenced redundant chunks would now account for geferenced chunks.

much smaller percentage of the chunks in the new group
1. D. Group Store

To address this issue, BEFRAG usesgroup gap FGDEFRAG stores two kinds of groupslogical
which is a distance threshold measured in MBs, togroups and physical groups in order to read the
quantitatively determine whether two referenced redunreferenced chunks of each segment for data restoration.
dant chunks are close enough or sufficiently far away 1) physical Group StoreAfter fragmented data has
from each other. Group gap is defined to be the diskyeen identified, FEEFRAG organizes the fragmental
bandwidth multiplied by the disk seek time. In other chunks and the unique chunks of each segment into a
words,two redundant chunks are considered sufficientlysingle group, called ahysical groupand then appends
far apart to be placed in two different logical groups if it to the disk. The size of such a physical group can
the amount of non-referenced data between them takese variable from one segment to another. To maximize
the disk a time equal to or greater than its disk seekthe data write performance, FEGFRAG writes multiple
time to transfer (read or write), and they are considered physical groups to disks in a batch mode. Meanwhile,
close enough to be in the same logical group otherwisejt yses agroup tableto store the group information
The rationale for using this distance threshold is baseqior future group retrieval, where each entry consists of
on the fact that each group is read atomically with onethree fields, group number, starting address and ending
disk seek for data restoration and, if the non-reference@gdress. The group number is used to identify each
data between two referenced chunks needs more timgroup, whereas the starting address and ending address
to transfer than its disk seek, it is more efficient to putgre used to locate the store addresses of each group on
these two referenced chunks into two different groupjisks.
in terms of valid read bandwidth of the segment. 2) Logical Group StoreBesides the physical groups,
the logical groups that are not identified as fragmental
_ groups based on Formula (1) must also be remembered,
~ For each logical group, FEEFRAG uses the follow- iy order for data restores to easily locate the referenced
ing formula to decide whether it is a fragmental group. nop-fragmental chunks for each segment. Similar to the
Based on the formula, if the inequality is false then theggge of physical groups, FEFRAG stores the group

C. Fragment Identification

group is considered fragmental. information of each logical group in the group table,
X 1 consisting of the group number, starting address and
s > B'N D ending address. Both the phy;ical groups and logical
B groups are numbered automatically and incrementally,

In this inequality expressiom is the disk bandwidth, adding 1 for each new group from the latest group
t the disk seek timeN a non-zero positive integer number.
representing the bandwidth threshold factor explained However, in order to provide flexibility and efficiency,
next, x the total size of the referenced chunks innot all of the logical groups that are not identified

Logical groups Dataset name | MAC snaphsots | fsdhome
Groun A #of versions 100 11
W wroup Total size 6.3618 3.4TB
| i | Unique size 6.29GB 400GB
Physical groups ! ! i
‘ W%] ;....4] TABLE |: Characteristics of datasets.

Group 1 Group 3

metric for defragmentation space efficiency. Since all
the defragmentation approaches try to decrease data
fragmentation by rewriting some fragmental chunks,

as fragmental groups require to be numbered an@t the cost of storing duplicate chunks, deduplication

remembered as new groups in the group table. Fig. gatio quantifies this defragmt.anta}tion space cost. In
shows the relationships between the referenced norther words, a higher deduplication ratio indicates a
fragmental chunks and their logical groups and thelower space cost. Restore performance is an important
corresponding physical groups, where the chunks iperformance metric for defragmentation effectiveness,
each logical group are either stored in the same physicai"ce the goal of defragmentation is to improve the
group or span across two adjacent physical groups. aLestore performanc_e. Fo_r each backup stream, the re-
indicated in Fig. 5, the logical group that completely store.performance is defined to be t.h_e total amount of
resides in a single physical group can leverage th&at@ in the whole backup stream divided by the time
same information as their hosting physical group forSPent reading the data regions containing the referenced

the purpose of chunks’ identification and location andchunks, including the time spent on data reads and disk
thus would not be remembered as a new group. seeks. In our experiments, each disk seek takes 10ms

and the disk bandwidth is 100MB/s.
Evaluation workloads: the datasets. The datasets

V. Experimental Evaluation used in our experiments come from the public archive

traces and snapshots [16], including MAC snapshots and
In this section, we assess the benefits ofEEBRAG Fslhome dataset. The MAC snapshots dataset was col-
with an extensive experimental evaluation. lected on a Mac OS X Snow Leopard server running in
an academic computer lab, whereas the Fslhome dataset
contains snapshots of four students’ home directories
Baseline defragmentation approaches. We imple- from a shared network file system. In both the datasets,

mented F®EFRAG in Destor [4] and compare its per- the average chunk size is 8KB. Table | shows their other
formance with the three state-of-the-art and prominentharacteristics.

defragmentation approaches introduced in Section II, o)
HAR [3], CAP [7], and CBR [5], which are referred B. Deduplication Ratio
to as baseline defragmentation approaches in this e- Table Il compares the deduplication ratios and the
valuation. We implemented these three defragmentatioamounts of the rewritten data between BEFRAG
approaches in Destor, and the thresholds used foand the baseline approaches for all the 100 MAC
fragments identification are set to their default valuessnapshots and 14 versions of the Fslhome datasets. The
based on the original publications. Specifically, theresults indicate that FEEFRAG'S deduplication ratio is
rewrite utility in CBR is set to be d, the percentage 6.4% higher than CAP, 1.1% higher than CBR for the
threshold used to identify sparse containers in HAR isSMAC snapshots dataset, and 6.5% higher than CAP,
set to be (b, and the M used to identify fragmental 1.5% higher than CBR for the Fslhome dataset. In
containers in CAP is set to be 8 with a container sizethe meantime, FGEFRAG rewrites 70% and 29.4%
of 4AMB and a segment size of 16MB. In B&FRAG, less data than CAP and CBR for the MAC shapshots
we set the bandwidth threshold factdrto be 10. For dataset, 70.6% and 36% less data than CAP and CBR
evaluating the restore performance, we implement twdor the Fslhome dataset. The significant reductions in
other baseline non-defragmentation approaches that dbe amount of rewritten data by FEGFRAG is due
not use any rewrite algorithm but use the LRU and OPTto its accurate identification of the data fragments
cache algorithms for restore optimizations. that minimizes false positive identifications of data
Performance metrics and evaluation objectives. fragments and thus, it rewrites much few redundant
We compare these approaches in two performancehunks to disks.
metrics, deduplication ratio and restore performance. Moreover, F@EFRAG underperforms HAR in dedu-
Deduplication ratio, defined as the amount of dataplication ratios for both datasets, even though it also
removed by deduplication divided by the total amount ofreduces false positive fragmental data as described in
data in the backup stream, is an important performanc&ection II-B. The main reason is that HAR has more

Fig. 5: Chunks' relationship between logical groups and
physical groups.

A. Experimental Setup

Deduplication Ratio| Rewritten Data Approaches # of disk seeks| reading data(GB)
(percentage) (GB) None+LRU 72402 30368
MAC fslhome MAC | fslhome None+OPT 55346 23224
FGDEFRAG | 964 915 163 112 HAR 29420 1234
CAP 90 85 542 3808 CAP 22167 92.98
CBR 953 90 231 175 CBR 16006 67.13
HAR 98 93 50 882 FGDEFRAG+LRU 13228 59.26
None 99 935 0 0 FGDEFRAGHOPT 12790 57.43

TABLE Il: Comparison between FGDEFRAG and the TABLE I11: Comparison between the FGDEFRAG and the
baseline defragmentation approaches (CAP, CBR, HAR) baseline approaches in terms of the number of disk seeks
and baseline non-defragmentation approach (None) in and the total size of read data required to restore the last
terms of the deduplication ratio and amount of the version of the MAC snapshots datasets with a 1GB cache.
rewritten data for all the backup versions of MAC

snaphsots and Fslhome dataset. in order to know the future chunks’ access patterns.

fal ves: that is. it mi identifvi | Specifically, during a backup process, when a chunk
fa € negaltlv?]s, tkat 'S'('jt r?]lsses : gntlfyllng sorr:je c:jcalis processed through either redundancy elimination or
ragmenta chunks, an thus rewrites less redundanysi, writing, it has a storage unit. We record the IDs of
chunks to (.j!SkS for restore performance optimization.y,qqe storage units during backup processes, and then
More s_pecmcally, compare_d to .aII. the other defrag—use these ID sequences to guide for chunks’ reading
mentation approaches that identify in a segmgnt ('_'?" ?juring data restores and help OPT cache algorithm to
small part of a backup stream) locally, HAR identifies know which storage unit that will not be accessed for

the fragmental chunks in sparse containers in a Who'?he longest time in the future to make room for other
backup stream globally. As a result, each container i”storage units

HAR can have more referenced chunks in a global

. : Fig. 6 and Fig. 7 compare the restore performance
backup stream than that in a small segment. A container .
) . . etween FGEFRAG and the baseline approaches to
not identified as a sparse container that meets the

percentage threshold of globally referenced chunks i .\r/cejlcesjsl\gﬁgwin?:p(;l?:t:;ngufsg?or:riSdslﬁiit%arse;pec'
likely the one that cannot meet the percentage threshol Y. ' P

in a segment locally. Unable to identify such local sparseIne approaches consistently in all cases. For the MAC

containers, HAR, therefore, rewrites fewer fra mentalsnapShOtS dataset, BEFRAGE on average, outper-
X ' ' 9 forms CAP, CBR and HAR by 60%, 20% and 176%,
(redundant) chunks.

respectively when the cache size is 512MB; 63%, 19%
C. Restore Performance and 116%, respectively when the cache size is 1GB,
Restore performance is the most important perfor2nd 62%, 19.6% and 23% respectively when the cache
mance metric for measuring the effectiveness of deSiz€ is 2GB. For the Fslhome dataset, THERAG
fragmentation approaches. In this subsection, we com@utperforms CAP, CBR and HAR by 27%, 38% and
pare the restore performances betweerpEErAG and ~ 262% respectively with a 512MB cache; 30%, 37% and
the defragmentation baseline approaches (CAP, CBRZ17% with a 1GB cache; 35%, 38% and 159% with a
HAR) and the non-defragmentation baseline approaciGB cache; and 43%, 39%,and 76% with a 4GB cache.
based on LRU and OPT cache algorithms (simply There are two reasons for such significant improve-
referred to asNond. For CAP, CBR and HAR, var- ments in F®EFRAG. First, FGEFRAG accurately
ious cache algorithms are employed to improve thddentifies the fragmental chunks, and thus only rewrites
restore performance, For example, CAP uses Asser®@ minimal number of redundant data chunks with
bly Area [7]; HAR uses OPT [3]; and CBR uses increased spatial locality to improve the restore perfor-
LFK [6]. For the FG®EFRAG and non-defragmentation mance. Second, FEFRAG reads variable-sized groups
baseline approaches, both LRU and OPT cache algd?ased on the address affinity of referenced chunks,
rithms are implemented, i.e., FEFRAG+LRU/OPT, rather than reading a fixed large amount of chunks
None+LRU/OPT. Both LRU and OPT cache replace-each time regardless of the disk addresses of the ref-
ment algorithms are implemented based on their basi€renced and non-referenced chunks. ThusDERRAG
reading/storage units. For example, B&¥RAG evicts ~ can accurately locate and read the referenced chunks
the least recently used group by LRU algorithm or evictswith higher valid read bandwidth for data restores. The
the group that will not be accessed for the longest timecombination of these two methods enablesDEGRAG
in the future by OPT algorithm when the cache is full. to restore the dataset with a fewer number of disk
Moreover, because the sequence of reading chunkeeeks and a smaller amount of data than the baseline
during the restore is just the same as the sequence @pproaches, as detailed in Table IlI, leading to much
writing them during a backup, we implemented the OPThigher restore performance.
cache algorithm with the help of the backup process Since HAR misses identifying and rewriting lo-

—=— FGDEFRAG+LRU —e— FGDEFRAG+OPT —s— FGDEFRAG+LRU —e— FGDEFRAG+OPT
—a— E(igEFRAGﬂR(L:JB? FGDE;F;As+OPT 60 CAP CBR HAR 6.04 CAP CBR HAR
e — N 0 M > . —— —v— —
] None+OPT —— None+LRU ——
6.0 None+OPT —— None+LRU sl one one 551 None+OPT None+LRU
551 —g— —— —3 50 ———
501 [—— m—————] 5.0 -
- 45{ »—v—v—v—v—v—v—v—v—7 4.59 ISee=ct s ————ax{
1 a 40 a 409 —
aQ 40
=]] 3 3.5
S 351 5 35 . . .- S .
o . *
D 30 ® 3.0 D 3.0
8. 2'5, Q254 r—p—r— — Q25
72]
20 by 2.0 2.0
151 1.5+ 1.5+
101 ¢&—+—+—+—+—+—+—+—+— 1.07 1.0
05 ‘ ‘ ‘ ‘ ‘ 05 : ‘ : : : 05 : ‘ : : :
5) 5 s 10 2 4 6 8 10 2 4 6 8 10
version numbers version numbers version numbers
(a) Cache size: 512MB (b) Cache size: 1GB (c) Cache size: 2GB

Fig. 6: Comparison between FGDEFRAG and the baseline approaches in restore performance with the last 10 versions of
the MAC snapshots dataset. Speedup represents the restore performance normalized by that of the None+L RU approach.

—- FGDEFRAG+LRU -@- FGDEFRAG+OPT
—-A-CAP -y-CBR —p-HAR
None+OPT —¢- None+LRU

—- FGDEFRAG+LRU -@- FGDEFRAG+OPT
—-A-CAP —y-CBR —p-HAR
None+OPT ~¢-None+LRU 5.0 None+OPT —¢-None+LRU c0]| A-CAP —yCBR —p-HAR

45 Se—a—p— 001 45] TR o onae Sl o SN 45|~ None+OPT ¢ None+LRU
Q4.0 A——A—A—N_‘_"_‘_H Q 4.0 Q Q
35| VvV vy A AT TS 3 35 ‘:v‘:‘_v—v\.:‘:ﬁ:ﬁ 338 335

. 5 3 30 ‘%:H_a‘-—*—-‘ B o e NP S

@ FGDEFRAG+LRU -@- FGDEFRAG+OPT
—4-CAP -y-CBR —p-HAR

6.0
5.5

6.0

5.5 —mFGDEFRAG+LRU -@- FGDEFRAG+OPT

o} o Q25 D25 4o
325 &2 @ 20 ——b Y MM -
L 159 > 15 15
10 44+« 101 —4—¢—¢—¢—¢—4+<+<<« RiAanan anan s N 10] 444444+«
05 05 05 05
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
version numbers version numbers version numbers version numbers
(a) Cache size: 512MB (b) Cache size: 1GB (c) Cache size: 2GB (d) Cache size: 4GB

Fig. 7. Comparison between FGDEFRAG and the baseline approaches in restore performance with the last 10 versions
of the Fdhome dataset. Speedup represents the restore performance normalized by that of the None+L RU approach.

cal fragmental chunks for restore performance opti-D. Sensitivity Studies
mizations (as described in Section IV-B), its perfor-
mance is only comparable to that of the baseline In the design space of HEEFRAG, there are one
non-defragmentation approach using the OPT cachénportant design parameter, namely, the bandwidth
replacement algorithm when the cache size is eithethreshold factom, that significantly impacts both the
512MB, 1GB, 2GB or GB when it is used to process deduplication ratio and restore performance metrics.
the Fslhome dataset. For the MAC snapshot datasef; GDEFRAG identifies fragmental groups by comparing
it has the lowest restore performance among the threthe valid read bandwidth to a specified bandwidth
baseline defragmentation approaches when the cachBreshold (i.e., factoN in Formula(1)). Thus different
size is 512MB and 1GB respectively. The main reason ig?andwidth thresholds are likely to have differentimpact-
that HAR cannot capture the spatial locality of the localS on the deduplication ratios and restore performance
fragmental chunks in the restore cache, and thus it needgeasures. Fig. 8 shows BGFRAGS deduplication
more accesses to disks for those fragmental chunks f@tio and restore performance as a function of the
failed to identify. When the cache size is increased toPandwidth threshold factoN while using the LRU
2GB for the MAC snapshot dataset, HAR outperformsalgorithm and OPT algorithm, respectively. The exper-
CAP and CBR because of the increased spatial localityment restores the last 20 backup versions of the MAC
captured by a large cache. However, due to the hardwarghapshots dataset.
cost and multi-user/multi-job environment where the As seen from the results, the deduplication ratio in-
limited cache space is shared among multiple applicacreases wittN, especially from 2 to 4 when it increases
tions, HAR’s advantage under the assumption of a largérom 88% to 94%. On the other hand, the restore
cache is likely to either diminish or become very costly. performance decreases significantlyNaghcreases. For
Moreover, because the MAC shapshots and Fslhomexample, under the LRU algorithm with a 256MB
datasets only require a disk space of 63GB and 19tache, the restore performance is reduced by about
GB, respectively to store their unique data chunks, we30% whenN grows from 2 to 18. This is because
did not evaluate their restore performance under a cachehen N increases, FBEFRAG is likely to identify
size of more than 2 GB for the MAC snapshot dataseffewer logical groups as fragmental groups and fewer
and 4 GB for Fslhome dataset. fragmental (redundant) chunks would be rewritten to
disks to improve restore performance, but also resulting
in higher deduplication ratio. To properly trade off

©
(9]
©
o

55 . .
0.88 0.90 0.92 0.94 0.96 0.98
Deduplication Ratio

55 L
0.88 0.90 0.92 0.94 0.96 0.98
Deduplication Ratio

Fig. 8 Sensitivity of the restore performance and
deduplication ratio to the value of the bandwidth threshold
factor N. The restore performance is the average value of
the last 20 versions of the MAC snapshots dataset. The
9 data points on each curve represent the corresponding
restore performance and deduplication ratio for each of
the 9 N values, 2, 4, 6, 8 10 12, 14, 16, 18, from left to
right.

[2]

(3]

(4]

between deduplication ratio and restore performance,
we need to select appropriate valuesh\bfor different
datasets. In our experimental datasets, the appropriate

N values are found to range from 6 to 10. (6]
. (7]

V. Conclusion

In this paper we introduce FEFRAG, a new defrag- 8]

mentation approach that is more accurate and efficient
than existing defragmentation approaches DEERAG

is a fine-grained approach that uses variable-sized and®!
adaptively located logical chunk groups based on the
address affinity of the chunks, to identify and re-
move fragmentation. FGEFRAGS high accuracy in
fragmentation detection and effective exploitation of
chunk locality enable it to improve both the restore[11]
performance and deduplication ratio. Our experimentalt?!
results show that FGEFRAG outperforms three state- |3
of-the-art defragmentation schemes, CAP, CBR and
HAR in restore performance by 27% to 63%, 19% 4]
to 39%, 23% to 262%. In terms of deduplication
ratios, F@EFRAG also outperforms CAP and CBR but [15]
slightly underperforms HAR, because HAR identifies
the fragmental chunks globally but at the expense of[16]
missed detection of some local fragmental chunks;
and therefore, HAR rewrites fewer redundant chunks/17]
leading to slightly higher deduplication ratio.

(10]

(18]
Acknowledgment 6]
The authors wish to thank the reviewers for their con-
structive comments. This work is supported in part by

National Natural Science Foundation of China (NSFC)
. 50 under Grant N0.61402061, No0.61672116, Chongqging
£80 V—_—‘_\ % I Basic and Frontier Research Project of China under
.| E,S_ Grant No.cstc2016jcyjA0274, No.cstc2016jcyjA0332,
Q (V] .
e e Research Fund for the Doctoral Program of Higher
gm L gm - Education of China Under Grant N0.20130191120031,
L € | —=—cache size=256MB NSF CCF-1629625 and NetApp grant.
D65l 865 | —e—cache s?ze=512MB
% ° —a— cache size=1GB
= = —v— cache size=2GB
Zeol Zeo | References
&J FGDEFRAG+OPT & FGDEFRAG+LRU

L [1] D. Bhagwat, K. Eshghi, D. D.E. Long, and M. Lillibridge.

Extreme Binning: Scalable, Parallel Deduplication for Chunk-
based File Backup. Technical Report HPL-2009-10R2, HP
Laboratories, Sep. 2009.

C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,

P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki.
Hydrastor: A scalable secondary storageFAST'09 Feb. 2009.

M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, F. Huang,
and Q. Liu. Accelerating Restore and Garbage Collection in
Deduplication-based Backup Systems via Exploiting Historical
Information. INUSENIX ATC’14 Jun. 2014.

M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, Y. Zhuang, and
Y. Tan. Reducing fragmenation impact with forward knowledge
in backup systems with deduplication. WSENIX FAST'15
Feb. 2015.

5] M. Kaczmarczyk, M. Barczynski, and C. Dubnicki. Reducing

impact of data fragmentation caused by in-line deduplication.
In ACM SYSTOR’12Jun. 2012.

M. Kaczmarczyk and C. Dubnicki. Reducing fragmentation
impact with forward knowledge in backup systems with
deduplication. INACM SYSTOR’15Jun. 2015.

M. Lillibridge, K. Eshghi, and D. Bhagwat. Improving
restore speed for backup systems that use inline chunk-based
deduplication. INUSENIX FAST'13Feb. 2013.

M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Campbell. Sparse Indexing: Large scale, inline
deduplication using sampling and locality. FAST'09 Feb.
2009.

Y. Nam, G. Park G. Lu, W. Xiao, and D. H. Du. Chunk
fragmentation level: An effective indicator for read performance
degradation in deduplication storage. IBEE HPCC’1] Sep.
2011.

Y. J. Nam, D. Park, and D. H. Du. Assuring demanded read
performance of data deduplication storage with backup datasets.
In IEEE MASCOTS'12Aug. 2012.

NIST. Secure Hash Standard. FPS PUB 180-1 May 1993.

S. Quinlan and S. Dorward. Venti: A new approach to archival
storage. INFAST’02 Jan. 2002.

M. O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

P. Shilane, R. Chitloor, and U. K. Jonnala. 99 Deduplication
Problems. INUSENIX Hotstorage'16Jun. 2016.

K. Srinivasan, T. Bisson, G. Goodson, and Y. Voruganti. iDedup:
Latency-aware, inline data deduplication for primary storage. In
USENIX FAST'12Feb. 2012.

Traces and Snapshots Public Archive. http://tracer.filesystems.
org/.

W. Xia, H. Jiang, D. Feng, and Y. Hua. SiLo: A Similarity-
Locality based Near-Exact Deduplication Scheme with Low
RAM Overhead and High Throughput. HSENIX ATC'11
Jun. 2012.

L. L. You, K. T. Pollack, and D. D. E. Long. Deep Store: An
archival storage system architecture. IGDE’05, Apr. 2005.

B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck
in the Data Domain deduplication file system.RAST'08 Feb.
2008.

10

