
FGDEFRAG: A Fine-Grained Defragmentation Approach to Improve Restore
Performance

Yujuan Tan∗, Jian Wen∗, Zhichao Yan†, Hong Jiang†, Witawas Srisa-an‡, Baiping Wang∗, Hao Luo§

∗College of Computer Science, Chongqing University, China
Email: tanyujuan@gmail.com, b615350236@gmail.com, wbpbox@live.com

†University of Texas Arlington, Email: yanzhichao.hust@gmail.com, hong.jiang@uta.edu
‡University of Nebraska Lincoln, Email:witty@cse.unl.edu

§Nimble Storage, Email:hluo@cse.unl.edu

Abstract
In deduplication-based backup systems, the removal

of redundant data transforms the otherwise logically
adjacent data chunks into physically scattered chunks
on the disks. This, in effect, changes the retrieval
operations from sequential to random and significant-
ly degrades the performance of restoring data. These
scattered chunks are calledfragmented dataand many
techniques have been proposed to identify and sequen-
tially rewrite such fragmented data to new address areas,
trading off the increased storage space for reduced
number of random reads (disk seeks) to improve the
restore performance. However, existing solutions for
backup workloads share a common assumption that
every read operation involves a large fixed-size window
of contiguous chunks, which restricts the fragment
identification to a fixed-size read window. This can
lead to inaccurate detections due to false positives since
the data fragments can vary in size and appear in any
different and unpredictable address locations.

Based on these observations, we propose FGDE-
FRAG, a Fine-Grained defragmentation approach that
uses variable-sized and adaptively located data groups,
instead of using fixed-size read windows, to accurate-
ly identify and effectively remove fragmented data.
When we compare its performance to those of existing
solutions, FGDEFRAG not only reduces the amount
of rewritten data but also significantly improves the
restore performance. Our experimental results show
that FGDEFRAG can improve the restore performance
by 19% to 262%, while simultaneously reducing the
rewritten data by 29% to 70%.

I. Introduction

Data deduplication is a lossless compression technology
that has been widely used in backup [19], [8], [1],
[17] and archival systems [12], [18], [2]. It breaks data
streams into approximately equal-sized data chunks that

are each uniquely “fingerprinted” [13] to identify chunk-
level data redundancy. A chunk fingerprint is generated
by a secure hash algorithm [11] according to the
content in that chunk. If two fingerprints of two chunks
generated by applying the same hash algorithm are
identical, they are regarded as duplicate, or redundant
chunks and only one instance is stored; the other
chunk is then replaced by an address pointer to the
stored instance. In backup systems, the incrementally
changing nature of the data streams leads to a very
high compression ratio, typically from 10x to 100x
since a large percentage of the data is redundant among
different backup versions.

While data deduplication significantly increases stor-
age space efficiency, it also substantially complicates
the post-deduplication storage management [14], [4].
For example, due to the removal of redundant chunks,
the logically adjacent data chunks that belong to a
specific file or data stream are scattered in different
places on disks, transforming the retrieval operations
of such files or data streams from sequential to random.
This significantly increases the retrieval time because
of the extra disk seeks, with the worst case of one seek
per chunk.

Fig. 1 illustrates this problem with a simple but
intuitive example. In Fig. 1, FileA and file A’ share
the common chunkC. When fileA’ enters the backup
system after fileA, only chunksE andF of file A’ would
be stored since chunkC is already stored by fileA,
and thus chunkC is stored separately (non-sequentially)
from chunksE and F. Thus reading fileA’ requires at
least two disk seeks, one for chunkC and another for
chunksE and F. Generally, we call a chunk such as
chunkC as fragmented data of fileA’. If chunkC is not
large enough to amortize the extra disk seek overhead,
this fragmentation problem can result in excessive disk
seeks and lead to poor restore performance that can
degrade the recovery time objective (RTO). RTO is a
very important performance metric for any customers

1

File A

stored by

 File A

Chunk

B

File A and File A stored on disks

Chunk

C

Chunk

D

Chunk

E

Chunk

C

Chunk

F

File A

Chunk

B

Chunk

C

Chunk

D

Chunk

E

Chunk

F

stored by

File A

Fig. 1: An example of fragmented data.

who buy backup products.
The fragmentation problem in deduplication-based

backup systems has been identified and studied to a
certain extent by both industry and academia [3],
[7], [5], [9], [10], [6]. To restore a backup stream,
all these existing approaches have made a common,
fundamental assumption that each read operation in-
volves a large fixed number of contiguous chunks with
a single disk seek. With this assumption, the disk seek
time is sufficiently amortized to become negligible for
each data read operation, and the read performance is
determined by the percentage of referenced chunks per
read in each backup stream. That is, existing approaches
identify fragmented data based on the percentage of
the referenced chunks in each fixed-size window (i.e.,
the size of the read data). If the percentage of the
referenced chunks is smaller than a preset threshold,
these referenced chunks will be identified as fragmented
data and rewritten to be with the unique chunks of the
same data stream to make future reads more sequential,
trading off the increased storage space for a reduced
number of reads (disk seeks) in the restore process.
Taking Fig. 1 for example, chunkC may be rewritten to
be with chunksE andF for File A’ to read them more
sequentially.

Unfortunately, while the existing approaches can
improve the data restore/read performance by identify-
ing and rewriting the fragmental chunks, they fail to
accurately identify and effectively remove data frag-
mentation. More specifically, since the amount of data
involved in each read in the existing approaches is
assumed to be a fixed-size unit, the identification of
fragmented data is restricted within a fixed-size window
(i.e., the size of the read data). But in reality, fragmented
data vary in size and can appear in different, unpre-
dictable address locations. Detecting fragmented data
in a fixed-size window can restrict the size and location
of the fragmented data that can be identified and cause
many false positive detections.

Consider, for example, a group of referenced chunks
stored sufficiently close to one another that they either
reside in a single read window but fail to meet the preset
percentage threshold of referenced chunks, or meet
the threshold but are split into two neighboring read

windows where the split parts in each neighborhood
fail to meet the threshold. Clearly, in both cases this
group of closely stored reference chunks would be
identified as fragmented data when they actually are
not, thus resulting in false positive identification. These
false positive detections can lead to rewriting more
fragmental chunks but without substantially improving
the restore performance.

Based on these aforementioned analysis and obser-
vations, we propose FGDEFRAG, a Fine-Grained de-
fragmentation approach to improve restore performance
in deduplication-based backup systems. The main idea
and salient feature of FGDEFRAG is to use variable-
sized and adaptively located groups, instead of the fixed-
size windows in the existing approaches, to identify
fragmented data and atomically read data for data
restores. Specifically, FGDEFRAG first divides the data
stream into variable-sized logical groups based on the
on-disk store address affinity of the referenced chunks,
i.e., contiguous and/or close-by referenced chunks are
grouped into the same group and far-apart chunks are
separated into different groups. Then for each logical
group, it identifies fragmented data by comparing the
valid read bandwidth, defined to be the total data
volume of the referenced chunks of this group divided
by the time spent reading the entire group (referenced
and non-referenced chunks) and doing disk seek, to a
preset bandwidth threshold. If it is smaller than the
threshold, the corresponding referenced chunks will be
identified as fragmental chunks. Finally, FGDEFRAG

organizes the fragmental chunks and the new unique
chunks of the same backup stream into variable sized
physical groups and writes them to disks in batches.
In data restores, the variable sized physical and logical
groups are each read atomically.

When we compare its performance to those of the
existing approaches, FGDEFRAG has two unique ad-
vantages. First, FGDEFRAG identifies the fragmented
data based on the variable-sized groups and the measure
of valid read bandwidth of the referenced chunk for
each group, enabling it to accurately identify fragmental
chunks and only rewrite a minimal number of redundant
data chunks with increased spatial locality to improve
the restore performance. Second, FGDEFRAG reads
variable-sized groups based on the address affinity of
referenced chunks, rather than reading a fixed large
number of chunks each time regardless of the disk
addresses of the referenced and non-referenced chunks,
enabling it to accurately locate and read the referenced
chunks with fewer disk seeks and a smaller amount
of data to improve the data restore performance. Our
experimental results show that FGDEFRAG can achieve
a restore performance improvement between 19% to
262% while simultaneously reducing the amount of

2

rewritten data by 29% to 70%, when compared to the
existing defragmentation approaches.

The rest of this paper is organized as follows. Section
II describes the related work and our observations to
motivate the FGDEFRAG. The design and implemen-
tation are detailed in Section III. Section IV evaluates
FGDEFRAG and Section V concludes the paper.

II. Background and Motivation

For a given backup stream, fragmented data that are
stored separately from its unique chunks, requires many
more disk seeks to restore them than if they were
stored sequentially with the unique chunks. In this
section, we first review the state-of-the-art defragmen-
tation approaches to help understand how they identify
and remove the fragmental redundant chunks, and then
analyze their common problems and present our obser-
vations to motivate FGDEFRAG approach.

A. Related Work on Defragmentation

In general, all existing defragmentation solutions for
backup workloads define and quantify fragmented data
based on the percentage of the data that belongs to a
given backup stream contained in a fixed-size atomic
read operation. We use an example shown in Fig. 2 to
help illustrate the main ideas of the existing approaches.

In Fig. 2, there are two data objects, data object
1 with 20 chunks and data object 2 with 13 chunks.
Data object 1 and data object 2 share 7 common
chunks,B, C, H, I, J, O, and Q. All the chunks are
stored in fixed-size containers of five chunks each on
disks. For dataobject 1, all of its chunks are stored
sequentially in the first 4 containers. But for dataobject
2, without applying any defragmentation approaches,
its unique chunks are stored sequentially in the next
two containers, 5 and 6, while its redundant (duplicate)
chunks are stored separately via address pointers among
the first 4 containers initiated by dataobject 1, as shown
in Fig. 2(a). In this case, while no duplicate chunks are
stored, it would require reading all 6 containers (1-6, 6
disk accesses) to restore dataobject 2, assuming that a
container is the atomic read unit. When applying any
of the defragmentation approaches, however, some of
the redundant chunks is identified as fragmented data
and rewritten to containers 5 and 6, to be stored along
with the unique chunks of dataobject 2, as shown in
Figures 2(b), 2(c), and 2(d). Next we describe some of
the state-of-the-art defragmentation approaches.

1) HAR: The history rewriting algorithm (HAR) [3]
uses a 4MB container as the atomic unit for data
read operations and classifies the fragmented data into
two categories based on container types, out-of-order

Data object 1

U V B C H I J W X Y Z O
Data object 2

A B C D E F G H I J K L M N O
P Q R S T U V W X Y

Container 1 Container 2 Container 3

Container 4 Container 5 Container 6

(a) Data object 1 and data object 2 stored on disks without any defragmentation algorithm

(b) Data object 1 and data object 2 stored on disks by HAR algorithm

(c) Data object 1 and data object 2 stored on disks by CAP algorithm

(d) Data object 1 and data object 2 stored on disks by CBR algorithm

Z

Q

A B C D E F G H I J K L M N O

P Q R S T U V B C W

Container 1 Container 2 Container 3

Container 4 Container 5 Container 6

X Y Z O Q

A B C D E F G H I J K L M N O
P Q R S T U V W X Y

Container 1 Container 2 Container 3

Container 4 Container 5 Container 6

Z O Q

A B C D E F G H I J K L M N O
P Q R S T U V B C W

Container 1 Container 2 Container 3

Container 4 Container 5 Container 6

X Y Z O Q

A B C D E F G H I J K L M

0N O P Q R S T

Fig. 2: An example of different data layouts on disks in
existing solutions for backup workloads. Note that gray-
out chunks indicate the redundant chunks.

containers and sparse containers. An out-of-order con-
tainer is accessed intermittently and frequently during
a restore, leading to degraded data read performance
because of repeated disk accesses in a short period
of time. This out-of-order container-induced problem
is amenable to a cache-based solution because of the
high temporal access locality of this type of containers
and thus can be solved by employing powerful cache
replacement algorithms, such as Assembly Area used
in CAP [7], OPT used in HAR [3], and LFK [6]. A
sparse container is one for which the percentage of the
referenced chunks is smaller than a preset threshold
that indicates an insufficient amount of valid data in
each read of the container. For example, in Fig. 2,
if data object 2 represents a backup stream and the
threshold is set to be 50%, the three containers, 1, 3
and 4, are regarded as sparse containers. HAR rewrites
the referenced chunks in these sparse containers,B, C,
O and Q, to containers 5 and 6, to be stored among
the unique chunks of dataobject 2, as shown in Fig.
2(b). Thus, with HAR, one only needs to read three
containers, 2, 5 and 6, to restore dataobject 2, at the
cost of storing 4 duplicate chunksB, C, O andQ.

2) CAP: The capping algorithm (CAP) [7] also
assumes that each atomic read involves a fixed-size
container and identifies fragmented data according to
the number of containers that are referenced by a fixed-
size segment in a backup stream, where a fixed-size
segment is a small part in a backup stream that is
composed of a fixed number of contiguous chunks. For
a segment, if the number of the referenced containers is
larger than a preset integer M, CAP would select the top

3

M containers that contain the most referenced chunks as
non-fragmental containers, and correspondingly, the re-
maining containers that contain fewer referenced chunks
are then identified as fragmental containers and their
referenced chunks are organized to be rewritten to new
containers sequentially with the unique chunks. Again,
taking Fig. 2 as an example, if dataobject 2represents a
data segment and the integerM is 2, CAP identifies the
two referenced containers, 3 and 4 that have only one
referenced chunk each, as fragmental containers. The
referenced chunks in these two fragmental containers,
O and Q, are then rewritten to containers 5 and 6, as
shown in Fig. 2(c). Note that, with CAP, four containers,
1, 2, 5 and 6, need to be read to restore dataobject 2,
but at a lower redundancy cost than HAR, storing only
two duplicate chunks,O andQ.

3) CBR: The context-based rewriting algorithm
(CBR) [5] uses a measure called Rewrite Utility to
decide whether a given referenced chunk is
fragmented data, which is different from CAP and
HAR that identify an entire group of referenced
chunks as fragmented data. Rewrite Utility is defined
to be the size of the chunks that are in the disk
context but not in the stream context divided by the
size of the chunks in the disk context. Disk context, in
this case, is defined as a set of chunks following the
decision chunk on disk, and stream context is defined
as a set of chunks following the decision chunk in the
backup stream, where the decision chunk is defined to
be a chunk that will be identified as a fragmental
chunks or non-fragmental chunk in the near future.
Both of the stream context and disk context are of
fixed sizes, and the size of the disk context is just the
size of the data volume read in each atomic read
operation, always setting to 2MB empirically. For a
decision chunk, if the Rewrite Utility is higher than a
preset minimal value, this chunk will be regarded as a
fragmental chunk. For the example in Fig. 2, if the
stream context is the 10 chunks following the decision
chunk and the disk context is five chunks following
the decision chunk, and the minimal value is set to be
75%, the four referenced chunks by dataobject 2, B,
C, O and Q, would be regarded as fragmental chunks,
since their Rewrite Utility are 80% or 100%, higher
than 75%. These fragmental chunks would be
rewritten to containers 5 and 6 along with the unique
chunks of dataobject 2, shown in Fig. 2(d).

4) Other approaches:HAR, CAP and CBR, are
three prominent defragmentation solutions for
deduplication-based backup systems. In addition,
iDedup[15] is a dynamic defragmentation solution for
primary storage workloads. Nam et al. [9] use a
quantitative metric to measure the fragmentation level
and propose a selective deduplication scheme[10] to

reduce the data fragmentation for backup workloads.
The metric is calculated based on how many
containers that are referenced by a backup stream,
which is similar to CAP.

B. Motivation

Our review of existing defragmentation solutions
for backup workloads reveals a common, fundamental
assumption they share; that is, each read operation
in the restore process involves a large fixed number
of contiguous chunks. The main rationale for this
assumption is to amortize the disk seek time with a long
data transfer time in the read operation. However, when
restoring a backup stream, the effective data restore
performance is determined not only by the total amount
of time but also by the percentage of the referenced
chunks per read. Thus, existing approaches identify
the fragmented data based on the percentage of the
referenced chunks in each fixed-size window (i.e., the
size of the read data) and rewrite the fragmented data to
be among the unique chunks of the same data stream to
improve data restore performance, trading off increased
storage space for reduced number of reads (disk seeks)
in the restore process. Ideally, the additional storage
space for storing the duplicate chunks identified as
fragmented data should be as small as possible while
the number of disk seeks is kept at a minimum. This
clearly requires the detection of fragmented data to be
highly accurate and efficient. Unfortunately, fragments
detection based on using fixed-size read windows in
existing defragmentation approaches for backup work-
loads could be very inaccurate.

For a given backup stream, the referenced chunks can
be grouped into different data regions naturally based
on their on-disk store address proximity and affinity,
i.e., contiguous or closely-located referenced chunks are
grouped into the same region and far-apart chunks are
separated into different regions, resulting in regions of
different sizes. Taking Fig. 2 for example, chunksB and
C can be grouped into the same region with a size of
two chunks, while chunksG, H, and I can be grouped
together into a region with a size of three chunks. Thus,
for a given data region, the disk seek time accounts for a
different percentage of the total reading time depending
on the size of the region, making the disk-seek overhead
different for a differently-sized region. That is, a larger
region would result in a lower the disk-seek overhead,
and vice versa. Therefore, treating all redundant chunks
equally by grouping them into fixed-size window to
identify the fragmental chunks and atomically read data
for data restores, like fixed-size containers in HAR and
CAP and fixed-size disk context in CBR, would surely
result in a mis-opportunity to explore and exploit the
address affinity of these redundant chunks of the data

4

stream to optimize the restore/read performance. These
observations motivate us to propose FGDEFRAG to use
variable-sized and adaptively located data regions based
on address affinity, instead of the fixed-size regions
of the existing approaches, for both identifying and
removing fragmented data and atomically reading data
during data restores, to optimize the restore performance
in deduplication-based backup systems.

III. FGDEFRAG Approach

In this section, we first present FGDEFRAG’s architec-
ture and then describe the design of its key functional
components.

A. Architectural Overview

FGDEFRAG is composed of three key functional
components: data grouping, fragment identification, and
group store. Fig. 3 shows its architecture and critical
data path. Data grouping divides the referenced re-
dundant chunks of each backup stream into variable-
sized logical groups according to their on-disk addresses
affinity, where the redundant chunks and their on-disk
addresses are found by inquiring the fingerprint index
table. After logical groups are identified and generated,
the fragment identification component examines each
group to determine whether its references to redundant
chunks are fragmented data by measuring the valid read
bandwidth. If the valid read bandwidth is smaller than
a preset threshold, the corresponding referenced chunks
are identified as fragmental chunks. Finally, the group
store component organizes the fragmental chunks and
the unique chunks of each backup stream into variable
sized physical groups and writes them to the group pool
on the disk, where a group table is used to store the
start and end addresses of each physical group for future
group retrieval. To restore a backup stream, FGDEFRAG

uses a group cache that is able to integrate any appropri-
ate cache replacement algorithm to improve the restore
speed. Next, we describe these three components and
illustrate how FGDEFRAG identifies and removes the
fragmented data.

B. Data Grouping

Data grouping focuses on the referenced redun-
dant chunks within each backup stream. Because the
fragmented data is caused by the redundant chunks
being stored separately from the unique chunks, it
requires multiple extra disk seeks for restoration. We
next describe the grouping process for the redundant
chunks and show a critical factor, calledgroup gap, that
affects the data grouping efficiency.

Disk

RAM

Index Cache

Fingerprint Index

Table

Group Cache

Data Grouping

 +

Group Store

Group Pool

Group Table

Backup Stream

Backup Restore

1

2

3

Fragment Identification

Fig. 3: FGDEFRAG’s Architecture.

1) The Grouping Process:For each backup stream,
data grouping is carried out in two steps.

In the first step, the backup stream is divided into
large fixed-size segments [7] and the redundant chunks
in each segment is sorted according to their on-disk
addresses. In our current design, each segment is set to
be 16MB by default. The redundant chunks and their on-
disk addresses are identified by searching the fingerprint
of each chunk in the fingerprint index table. A hit in
the table means that the decision chunk is a redundant
chunk and an identical chunk has already been stored
on the disks; otherwise, the chunk is unique.

In the second step, the sorted redundant chunks in
each segment are divided into variable-sized logical
groups according to their address affinity, i.e., contigu-
ous and/or closely-located chunks are grouped into the
same group and far-apart chunks are separated into
different groups, where each logical group starts and
ends with a redundant chunk. Note that, if the redundant
chunks in one logical group are not contiguous, it
can contain some non-referenced chunks (i.e., chunks
not belonging to the segment being processed) in the
address space.

Fig. 4 illustrates the data grouping process for a
segment. Fig. 4(a) shows the original sequence of the
redundant chunks in the segment and Fig. 4(b) shows
these redundant chunks sorted in ascending order of
their addresses, the result of Step 1. After Step 2 of
the process, Fig. 4(c) shows the three logical groups
formed according to their address affinity.

2) The Group Gap:A critical issue for data group-
ing is how to determine quantitatively whether two
redundant chunks in a certain proximity are either close
enough to be in the same logical group or sufficiently far
apart to be separated into two different logical groups.
If two chunks are far away from each other, i.e., they
are separated by many non-referenced chunks in an
address space, but are placed in the same logical group,
the relatively high percentage of non-referenced chunks
in the group would significantly affect the fragment
identification in a negative way. Taking the case in Fig.

5

A

1001

(a) The original sequence of the redundant chunks in the segment
C

1003

I

1054

D

1006

B

1002

F

1009

G

1010

H

1052

K

1056

O

1015

Q

1017

P

1016
R

1018

E

1007

L

1057

M

1059

N

1061

J

1055

A

1001

(b) The sorted list of the redundant chunks in the segment
B

1002

C

1003

D

1006

E

1007

F

1009

G

1010

H

1052

I

1054

J

1055

K

1056

L

1057
N

1061

O

1081

P

1082

Q

1083

R

1084

M

1059

A

1001

B

1002

C

1003

D

1006

E

1007

F

1009

G

1010

H

1052

I

1054

J

1055

K

1056

L

1057

M

1059

N

1061

O

1081

P

1082

Q

1083

R

1084

(c) The logical groups in the segment

Logical group 1

Logical group 2

Logical group 3

Chunk

address

Fig. 4: An example of the data grouping process.

4(c) as an example, if chunkH in group 2 were instead
included in group 1, 42 non-referenced chunks between
chunk G (address 1010) and chunkH (address 1052)
would be added to group 1, causing group 1 to be
identified as a fragmental group with a much higher
probability than when chunkH is in group 2, since the
referenced redundant chunks would now account for a
much smaller percentage of the chunks in the new group
1.

To address this issue, FGDEFRAG usesgroup gap,
which is a distance threshold measured in MBs, to
quantitatively determine whether two referenced redun-
dant chunks are close enough or sufficiently far away
from each other. Group gap is defined to be the disk
bandwidth multiplied by the disk seek time. In other
words,two redundant chunks are considered sufficiently
far apart to be placed in two different logical groups if
the amount of non-referenced data between them takes
the disk a time equal to or greater than its disk seek
time to transfer (read or write), and they are considered
close enough to be in the same logical group otherwise.
The rationale for using this distance threshold is based
on the fact that each group is read atomically with one
disk seek for data restoration and, if the non-referenced
data between two referenced chunks needs more time
to transfer than its disk seek, it is more efficient to put
these two referenced chunks into two different groups
in terms of valid read bandwidth of the segment.

C. Fragment Identification

For each logical group, FGDEFRAG uses the follow-
ing formula to decide whether it is a fragmental group.
Based on the formula, if the inequality is false then the
group is considered fragmental.

x

t + x+y
B

≥ B ·
1
N

(1)

In this inequality expression,B is the disk bandwidth,
t the disk seek time,N a non-zero positive integer
representing the bandwidth threshold factor explained
next, x the total size of the referenced chunks in

the group, andy the total size of the non-referenced
chunks in the group (i.e.,x+ y is the total size of
the logical group). Note that the denominator,t + x+y

B ,
on the left hand side of the inequality represents the
total time required to read the entire logical group,
including the disk seek time, and the whole expression,

x
t+ x+y

B
, represents the effective bandwidth of reading

all the referenced data during this time, or thevalid
read bandwidthas mentioned earlier. The expression on
the right hand side of the inequality,B ·

1
N , represents

the bandwidth threshold, a given fraction of the full
disk bandwidthB. In other words,a logical group
is considered afragmental groupand its referenced
chunks regarded asfragmental chunksif the valid read
bandwidth is smaller than the bandwidth threshold.
This formula enables FGDEFRAG to accurately identify
the fragmented data because it strictly follows the
data reading process, including the disk seek and data
reading, to calculate the valid read bandwidth of the
referenced chunks.

D. Group Store

FGDEFRAG stores two kinds of groups,logical
groups and physical groups, in order to read the
referenced chunks of each segment for data restoration.

1) Physical Group Store:After fragmented data has
been identified, FGDEFRAG organizes the fragmental
chunks and the unique chunks of each segment into a
single group, called aphysical group, and then appends
it to the disk. The size of such a physical group can
be variable from one segment to another. To maximize
the data write performance, FGDEFRAG writes multiple
physical groups to disks in a batch mode. Meanwhile,
it uses agroup table to store the group information
for future group retrieval, where each entry consists of
three fields, group number, starting address and ending
address. The group number is used to identify each
group, whereas the starting address and ending address
are used to locate the store addresses of each group on
disks.

2) Logical Group Store:Besides the physical groups,
the logical groups that are not identified as fragmental
groups based on Formula (1) must also be remembered,
in order for data restores to easily locate the referenced
non-fragmental chunks for each segment. Similar to the
case of physical groups, FGDEFRAG stores the group
information of each logical group in the group table,
consisting of the group number, starting address and
ending address. Both the physical groups and logical
groups are numbered automatically and incrementally,
adding 1 for each new group from the latest group
number.

However, in order to provide flexibility and efficiency,
not all of the logical groups that are not identified

6

A B C

A B J K L M N

K L M N

C

Logical groups

Physical groups

Group A Group B

Group 1 Group 2 Group 3

Fig. 5: Chunks’ relationship between logical groups and
physical groups.

as fragmental groups require to be numbered and
remembered as new groups in the group table. Fig. 5
shows the relationships between the referenced non-
fragmental chunks and their logical groups and the
corresponding physical groups, where the chunks in
each logical group are either stored in the same physical
group or span across two adjacent physical groups. As
indicated in Fig. 5, the logical group that completely
resides in a single physical group can leverage the
same information as their hosting physical group for
the purpose of chunks’ identification and location and
thus would not be remembered as a new group.

IV. Experimental Evaluation

In this section, we assess the benefits of FGDEFRAG

with an extensive experimental evaluation.

A. Experimental Setup

Baseline defragmentation approaches. We imple-
mented FGDEFRAG in Destor [4] and compare its per-
formance with the three state-of-the-art and prominent
defragmentation approaches introduced in Section II,
HAR [3], CAP [7], and CBR [5], which are referred
to as baseline defragmentation approaches in this e-
valuation. We implemented these three defragmentation
approaches in Destor, and the thresholds used for
fragments identification are set to their default values
based on the original publications. Specifically, the
rewrite utility in CBR is set to be 0.7, the percentage
threshold used to identify sparse containers in HAR is
set to be 0.5, and the M used to identify fragmental
containers in CAP is set to be 8 with a container size
of 4MB and a segment size of 16MB. In FGDEFRAG,
we set the bandwidth threshold factorN to be 10. For
evaluating the restore performance, we implement two
other baseline non-defragmentation approaches that do
not use any rewrite algorithm but use the LRU and OPT
cache algorithms for restore optimizations.

Performance metrics and evaluation objectives.
We compare these approaches in two performance
metrics, deduplication ratio and restore performance.
Deduplication ratio, defined as the amount of data
removed by deduplication divided by the total amount of
data in the backup stream, is an important performance

Dataset name MAC snaphsots fslhome
#of versions 100 11

Total size 6.36TB 3.4TB
Unique size 6.29GB 400GB

TABLE I: Characteristics of datasets.

metric for defragmentation space efficiency. Since all
the defragmentation approaches try to decrease data
fragmentation by rewriting some fragmental chunks,
at the cost of storing duplicate chunks, deduplication
ratio quantifies this defragmentation space cost. In
other words, a higher deduplication ratio indicates a
lower space cost. Restore performance is an important
performance metric for defragmentation effectiveness,
since the goal of defragmentation is to improve the
restore performance. For each backup stream, the re-
store performance is defined to be the total amount of
data in the whole backup stream divided by the time
spent reading the data regions containing the referenced
chunks, including the time spent on data reads and disk
seeks. In our experiments, each disk seek takes 10ms
and the disk bandwidth is 100MB/s.

Evaluation workloads: the datasets. The datasets
used in our experiments come from the public archive
traces and snapshots [16], including MAC snapshots and
Fslhome dataset. The MAC snapshots dataset was col-
lected on a Mac OS X Snow Leopard server running in
an academic computer lab, whereas the Fslhome dataset
contains snapshots of four students’ home directories
from a shared network file system. In both the datasets,
the average chunk size is 8KB. Table I shows their other
characteristics.

B. Deduplication Ratio

Table II compares the deduplication ratios and the
amounts of the rewritten data between FGDEFRAG

and the baseline approaches for all the 100 MAC
snapshots and 14 versions of the Fslhome datasets. The
results indicate that FGDEFRAG’s deduplication ratio is
6.4% higher than CAP, 1.1% higher than CBR for the
MAC snapshots dataset, and 6.5% higher than CAP,
1.5% higher than CBR for the Fslhome dataset. In
the meantime, FGDEFRAG rewrites 70% and 29.4%
less data than CAP and CBR for the MAC snapshots
dataset, 70.6% and 36% less data than CAP and CBR
for the Fslhome dataset. The significant reductions in
the amount of rewritten data by FGDEFRAG is due
to its accurate identification of the data fragments
that minimizes false positive identifications of data
fragments and thus, it rewrites much few redundant
chunks to disks.

Moreover, FGDEFRAG underperforms HAR in dedu-
plication ratios for both datasets, even though it also
reduces false positive fragmental data as described in
Section II-B. The main reason is that HAR has more

7

Deduplication Ratio Rewritten Data
(percentage) (GB)

MAC fslhome MAC fslhome
FGDEFRAG 96.4 91.5 163 112

CAP 90 85 542 380.8
CBR 95.3 90 231 175
HAR 98 93 50 88.2
None 99 93.5 0 0

TABLE II: Comparison between FGDEFRAG and the
baseline defragmentation approaches (CAP, CBR, HAR)
and baseline non-defragmentation approach (None) in
terms of the deduplication ratio and amount of the
rewritten data for all the backup versions of MAC
snaphsots and Fslhome dataset.

false negatives; that is, it misses identifying some local
fragmental chunks, and thus rewrites less redundant
chunks to disks for restore performance optimization.
More specifically, compared to all the other defrag-
mentation approaches that identify in a segment (i.e., a
small part of a backup stream) locally, HAR identifies
the fragmental chunks in sparse containers in a whole
backup stream globally. As a result, each container in
HAR can have more referenced chunks in a global
backup stream than that in a small segment. A container
not identified as a sparse container that meets the
percentage threshold of globally referenced chunks is
likely the one that cannot meet the percentage threshold
in a segment locally. Unable to identify such local sparse
containers, HAR, therefore, rewrites fewer fragmental
(redundant) chunks.

C. Restore Performance

Restore performance is the most important perfor-
mance metric for measuring the effectiveness of de-
fragmentation approaches. In this subsection, we com-
pare the restore performances between FGDEFRAG and
the defragmentation baseline approaches (CAP, CBR,
HAR) and the non-defragmentation baseline approach
based on LRU and OPT cache algorithms (simply
referred to asNone). For CAP, CBR and HAR, var-
ious cache algorithms are employed to improve the
restore performance, For example, CAP uses Assem-
bly Area [7]; HAR uses OPT [3]; and CBR uses
LFK [6]. For the FGDEFRAG and non-defragmentation
baseline approaches, both LRU and OPT cache algo-
rithms are implemented, i.e., FGDEFRAG+LRU/OPT,
None+LRU/OPT. Both LRU and OPT cache replace-
ment algorithms are implemented based on their basic
reading/storage units. For example, FGDEFRAG evicts
the least recently used group by LRU algorithm or evicts
the group that will not be accessed for the longest time
in the future by OPT algorithm when the cache is full.

Moreover, because the sequence of reading chunks
during the restore is just the same as the sequence of
writing them during a backup, we implemented the OPT
cache algorithm with the help of the backup process

Approaches # of disk seeks reading data(GB)
None+LRU 72402 303.68
None+OPT 55346 232.24

HAR 29420 123.4
CAP 22167 92.98
CBR 16006 67.13

FGDEFRAG+LRU 13228 59.26
FGDEFRAG+OPT 12790 57.43

TABLE III: Comparison between the FGDEFRAG and the
baseline approaches in terms of the number of disk seeks
and the total size of read data required to restore the last
version of the MAC snapshots datasets with a 1GB cache.

in order to know the future chunks’ access patterns.
Specifically, during a backup process, when a chunk
is processed through either redundancy elimination or
data writing, it has a storage unit. We record the IDs of
these storage units during backup processes, and then
use these ID sequences to guide for chunks’ reading
during data restores and help OPT cache algorithm to
know which storage unit that will not be accessed for
the longest time in the future to make room for other
storage units.

Fig. 6 and Fig. 7 compare the restore performance
between FGDEFRAG and the baseline approaches to
process MAC snapshots and Fslhome datasets, respec-
tively. As shown, FGDEFRAG outperforms all the base-
line approaches consistently in all cases. For the MAC
snapshots dataset, FGDEFRAGE, on average, outper-
forms CAP, CBR and HAR by 60%, 20% and 176%,
respectively when the cache size is 512MB; 63%, 19%
and 116%, respectively when the cache size is 1GB,
and 62%, 19.6% and 23% respectively when the cache
size is 2GB. For the Fslhome dataset, FGDEFRAG

outperforms CAP, CBR and HAR by 27%, 38% and
262% respectively with a 512MB cache; 30%, 37% and
217% with a 1GB cache; 35%, 38% and 159% with a
2GB cache; and 43%, 39%,and 76% with a 4GB cache.

There are two reasons for such significant improve-
ments in FGDEFRAG. First, FGDEFRAG accurately
identifies the fragmental chunks, and thus only rewrites
a minimal number of redundant data chunks with
increased spatial locality to improve the restore perfor-
mance. Second, FGDEFRAG reads variable-sized groups
based on the address affinity of referenced chunks,
rather than reading a fixed large amount of chunks
each time regardless of the disk addresses of the ref-
erenced and non-referenced chunks. Thus, FGDEFRAG

can accurately locate and read the referenced chunks
with higher valid read bandwidth for data restores. The
combination of these two methods enables FGDEFRAG

to restore the dataset with a fewer number of disk
seeks and a smaller amount of data than the baseline
approaches, as detailed in Table III, leading to much
higher restore performance.

Since HAR misses identifying and rewriting lo-

8

2 4 6 8 10
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

sp
ee

du
p

version numbers

 FGDEFRAG+LRU FGDEFRAG+OPT
 CAP CBR HAR
 None+OPT None+LRU

(a) Cache size: 512MB

2 4 6 8 10
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

 FGDEFRAG+LRU FGDEFRAG+OPT
 CAP CBR HAR
 None+OPT None+LRU

sp
ee

du
p

version numbers
(b) Cache size: 1GB

2 4 6 8 10
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

 FGDEFRAG+LRU FGDEFRAG+OPT
 CAP CBR HAR
 None+OPT None+LRU

sp
ee

du
p

version numbers
(c) Cache size: 2GB

Fig. 6: Comparison between FGDEFRAG and the baseline approaches in restore performance with the last 10 versions of
the MAC snapshots dataset. Speedup represents the restore performance normalized by that of the None+LRU approach.

2 4 6 8 10
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

 FGDEFRAG+LRU FGDEFRAG+OPT
 CAP CBR HAR
 None+OPT None+LRU

sp
ee

du
p

version numbers

(a) Cache size: 512MB

2 4 6 8 10
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

 FGDEFRAG+LRU FGDEFRAG+OPT
 CAP CBR HAR
 None+OPT None+LRU

sp
ee

du
p

version numbers

(b) Cache size: 1GB

2 4 6 8 10
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0 FGDEFRAG+LRU FGDEFRAG+OPT

 CAP CBR HAR
 None+OPT None+LRU

sp
ee

du
p

version numbers

(c) Cache size: 2GB

2 4 6 8 10
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

 FGDEFRAG+LRU FGDEFRAG+OPT
 CAP CBR HAR
 None+OPT None+LRU

sp
ee

du
p

version numbers

(d) Cache size: 4GB

Fig. 7: Comparison between FGDEFRAG and the baseline approaches in restore performance with the last 10 versions
of the Fslhome dataset. Speedup represents the restore performance normalized by that of the None+LRU approach.

cal fragmental chunks for restore performance opti-
mizations (as described in Section IV-B), its perfor-
mance is only comparable to that of the baseline
non-defragmentation approach using the OPT cache
replacement algorithm when the cache size is either
512MB, 1GB, 2GB or 4GB when it is used to process
the Fslhome dataset. For the MAC snapshot dataset,
it has the lowest restore performance among the three
baseline defragmentation approaches when the cache
size is 512MB and 1GB respectively. The main reason is
that HAR cannot capture the spatial locality of the local
fragmental chunks in the restore cache, and thus it needs
more accesses to disks for those fragmental chunks it
failed to identify. When the cache size is increased to
2GB for the MAC snapshot dataset, HAR outperforms
CAP and CBR because of the increased spatial locality
captured by a large cache. However, due to the hardware
cost and multi-user/multi-job environment where the
limited cache space is shared among multiple applica-
tions, HAR’s advantage under the assumption of a large
cache is likely to either diminish or become very costly.
Moreover, because the MAC snapshots and Fslhome
datasets only require a disk space of 63GB and 191
GB, respectively to store their unique data chunks, we
did not evaluate their restore performance under a cache
size of more than 2 GB for the MAC snapshot dataset
and 4 GB for Fslhome dataset.

D. Sensitivity Studies

In the design space of FGDEFRAG, there are one
important design parameter, namely, the bandwidth
threshold factorN, that significantly impacts both the
deduplication ratio and restore performance metrics.
FGDEFRAG identifies fragmental groups by comparing
the valid read bandwidth to a specified bandwidth
threshold (i.e., factorN in Formula(1)). Thus different
bandwidth thresholds are likely to have different impact-
s on the deduplication ratios and restore performance
measures. Fig. 8 shows FGDEFRAG’s deduplication
ratio and restore performance as a function of the
bandwidth threshold factorN while using the LRU
algorithm and OPT algorithm, respectively. The exper-
iment restores the last 20 backup versions of the MAC
snapshots dataset.

As seen from the results, the deduplication ratio in-
creases withN, especially from 2 to 4 when it increases
from 88% to 94%. On the other hand, the restore
performance decreases significantly asN increases. For
example, under the LRU algorithm with a 256MB
cache, the restore performance is reduced by about
30% whenN grows from 2 to 18. This is because
when N increases, FGDEFRAG is likely to identify
fewer logical groups as fragmental groups and fewer
fragmental (redundant) chunks would be rewritten to
disks to improve restore performance, but also resulting
in higher deduplication ratio. To properly trade off

9

0.88 0.90 0.92 0.94 0.96 0.98
55

60

65

70

75

80

85

0.88 0.90 0.92 0.94 0.96 0.98
55

60

65

70

75

80

85

 cache size=256MB
 cache size=512MB
 cache size=1GB
 cache size=2GB

FGDEFRAG+LRUFGDEFRAG+OPTR
es

to
re

 P
er

fo
rm

an
ce

(M
B/

s)

Deduplication Ratio

R
es

to
re

 P
er

fo
rm

an
ce

(M
B/

s)

Deduplication Ratio

Fig. 8: Sensitivity of the restore performance and
deduplication ratio to the value of the bandwidth threshold
factor N. The restore performance is the average value of
the last 20 versions of the MAC snapshots dataset. The
9 data points on each curve represent the corresponding
restore performance and deduplication ratio for each of
the 9 N values, 2, 4, 6, 8 10, 12, 14, 16, 18, from left to
right.

between deduplication ratio and restore performance,
we need to select appropriate values ofN for different
datasets. In our experimental datasets, the appropriate
N values are found to range from 6 to 10.

V. Conclusion

In this paper we introduce FGDEFRAG, a new defrag-
mentation approach that is more accurate and efficient
than existing defragmentation approaches. FGDEFRAG

is a fine-grained approach that uses variable-sized and
adaptively located logical chunk groups based on the
address affinity of the chunks, to identify and re-
move fragmentation. FGDEFRAG’s high accuracy in
fragmentation detection and effective exploitation of
chunk locality enable it to improve both the restore
performance and deduplication ratio. Our experimental
results show that FGDEFRAG outperforms three state-
of-the-art defragmentation schemes, CAP, CBR and
HAR in restore performance by 27% to 63%, 19%
to 39%, 23% to 262%. In terms of deduplication
ratios, FGDEFRAG also outperforms CAP and CBR but
slightly underperforms HAR, because HAR identifies
the fragmental chunks globally but at the expense of
missed detection of some local fragmental chunks;
and therefore, HAR rewrites fewer redundant chunks,
leading to slightly higher deduplication ratio.

Acknowledgment

The authors wish to thank the reviewers for their con-
structive comments. This work is supported in part by

National Natural Science Foundation of China (NSFC)
under Grant No.61402061, No.61672116, Chongqing
Basic and Frontier Research Project of China under
Grant No.cstc2016jcyjA0274, No.cstc2016jcyjA0332,
Research Fund for the Doctoral Program of Higher
Education of China Under Grant No.20130191120031,
NSF CCF-1629625 and NetApp grant.

References

[1] D. Bhagwat, K. Eshghi, D. D.E. Long, and M. Lillibridge.
Extreme Binning: Scalable, Parallel Deduplication for Chunk-
based File Backup. Technical Report HPL-2009-10R2, HP
Laboratories, Sep. 2009.

[2] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki.
Hydrastor: A scalable secondary storage. InFAST’09, Feb. 2009.

[3] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, F. Huang,
and Q. Liu. Accelerating Restore and Garbage Collection in
Deduplication-based Backup Systems via Exploiting Historical
Information. InUSENIX ATC’14, Jun. 2014.

[4] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, Y. Zhuang, and
Y. Tan. Reducing fragmenation impact with forward knowledge
in backup systems with deduplication. InUSENIX FAST’15,
Feb. 2015.

[5] M. Kaczmarczyk, M. Barczynski, and C. Dubnicki. Reducing
impact of data fragmentation caused by in-line deduplication.
In ACM SYSTOR’12, Jun. 2012.

[6] M. Kaczmarczyk and C. Dubnicki. Reducing fragmentation
impact with forward knowledge in backup systems with
deduplication. InACM SYSTOR’15, Jun. 2015.

[7] M. Lillibridge, K. Eshghi, and D. Bhagwat. Improving
restore speed for backup systems that use inline chunk-based
deduplication. InUSENIX FAST’13, Feb. 2013.

[8] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Campbell. Sparse Indexing: Large scale, inline
deduplication using sampling and locality. InFAST’09, Feb.
2009.

[9] Y. Nam, G. Park G. Lu, W. Xiao, and D. H. Du. Chunk
fragmentation level: An effective indicator for read performance
degradation in deduplication storage. InIEEE HPCC’11, Sep.
2011.

[10] Y. J. Nam, D. Park, and D. H. Du. Assuring demanded read
performance of data deduplication storage with backup datasets.
In IEEE MASCOTS’12, Aug. 2012.

[11] NIST. Secure Hash Standard. InFIPS PUB 180-1, May 1993.
[12] S. Quinlan and S. Dorward. Venti: A new approach to archival

storage. InFAST’02, Jan. 2002.
[13] M. O. Rabin. Fingerprinting by random polynomials.

Technical Report TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

[14] P. Shilane, R. Chitloor, and U. K. Jonnala. 99 Deduplication
Problems. InUSENIX Hotstorage’16, Jun. 2016.

[15] K. Srinivasan, T. Bisson, G. Goodson, and Y. Voruganti. iDedup:
Latency-aware, inline data deduplication for primary storage. In
USENIX FAST’12, Feb. 2012.

[16] Traces and Snapshots Public Archive. http://tracer.filesystems.
org/.

[17] W. Xia, H. Jiang, D. Feng, and Y. Hua. SiLo: A Similarity-
Locality based Near-Exact Deduplication Scheme with Low
RAM Overhead and High Throughput. InUSENIX ATC’11,
Jun. 2012.

[18] L. L. You, K. T. Pollack, and D. D. E. Long. Deep Store: An
archival storage system architecture. InICDE’05, Apr. 2005.

[19] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck
in the Data Domain deduplication file system. InFAST’08, Feb.
2008.

10

