Leveraging Flash in Scalable Environments:
A Systems Perspective on How FLASH Storage is Displacing Disk Storage

Roark Hilomen, Engineering Fellow
Systems & Software Solutions
May 3, 2016
Forward-Looking Statements

During our meeting today, we may make forward-looking statements.

Any statement that refers to expectations, projections, or other characterizations of future events or circumstances is a forward-looking statement, including those related to product performance, cost, capacity, various use cases, expectations that flash will displace traditional media and HDD, and deployment of flash with Hadoop. Risks that may cause these forward-looking statements to be inaccurate include among others: products may not perform as expected, at the cost expected, in the capacity expected, use cases may not apply as expected, flash may not displace traditional media and HDD as expected, and deployment of flash with Hadoop may not continue as expected or at all; or the other risks detailed from time-to-time in our Securities and Exchange Commission filings and reports, including, but not limited to, our annual report on Form 10-K for the year ended January 3, 2016. This release contains statements from third parties. We undertake no obligation to update these forward-looking statements, which speak only as of the date hereof or the date of issuance by a third party, as applicable.
Speeds and Feeds

<table>
<thead>
<tr>
<th>Technology</th>
<th>Throughput</th>
<th>Latency (micro)</th>
<th>AFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Gbe Ethernet</td>
<td>80MB/s</td>
<td>400+ (40+ RDMA)</td>
<td>IP based solutions</td>
</tr>
<tr>
<td>10Gbe Ethernet</td>
<td>800MB/s</td>
<td>400+ (40+ RDMA)</td>
<td>IP based solutions</td>
</tr>
<tr>
<td>25Gbe Ethernet</td>
<td>~2GB/s</td>
<td>400+ (40+ RDMA)</td>
<td>IP based solutions</td>
</tr>
<tr>
<td>40Gbe</td>
<td>~3+GB/s</td>
<td>400+ (40+ RDMA)</td>
<td>IP based solutions</td>
</tr>
<tr>
<td>HDD Enterprise</td>
<td>~200MB/s</td>
<td>4-6ms / 200-300 IOPS</td>
<td>Published AFR 0.73% (various by vendor)</td>
</tr>
<tr>
<td>HDD Cloud</td>
<td>~200MB/s</td>
<td>4-6ms / 100 IOPS</td>
<td>0.73</td>
</tr>
<tr>
<td>6G SAS SSD</td>
<td>550+MB/s</td>
<td>80-800</td>
<td>0.15</td>
</tr>
<tr>
<td>12G SAS SSD</td>
<td>700MB-1GB/s Per Port</td>
<td>80-600</td>
<td>0.15</td>
</tr>
<tr>
<td>PCIE/NVME SSD</td>
<td>800-2+GB/s</td>
<td>50-200</td>
<td>0.15</td>
</tr>
<tr>
<td>6G SATA SSD</td>
<td>500+MB/s</td>
<td>300-800</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Latency is controller bound and GC impacted

Dual Ported Capable

SanDisk
Speeds and Feeds Comparison

<table>
<thead>
<tr>
<th>Media 1</th>
<th>Media 2</th>
<th>Ratio</th>
<th>Fill Time @ 4TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>6G SAS/SATA</td>
<td>HDD</td>
<td>~2-3x</td>
<td>2 hrs vs 5 ½ hrs</td>
</tr>
<tr>
<td>12G SAS SSD</td>
<td>HDD</td>
<td>~5x</td>
<td>1 hr vs 5 ½ hrs</td>
</tr>
<tr>
<td>12G SAS SSD</td>
<td>6G SAS/SATA SSD</td>
<td>~2x</td>
<td>1 hr vs 2 hrs</td>
</tr>
<tr>
<td>PCIE/NVME</td>
<td>HDD</td>
<td>10x</td>
<td>½ hr vs 5 ½ hrs</td>
</tr>
<tr>
<td>PCIE/NVME</td>
<td>6G SAS/SATA SSD</td>
<td>4-6ms / 200-300 IOPS</td>
<td>½ hr vs 2 hrs</td>
</tr>
<tr>
<td>PCIE/NVME</td>
<td>12G SAS SSD</td>
<td>4-6ms / 100 IOPS</td>
<td>½ hr vs 1 hr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transport</th>
<th>Fill time @ 2TB</th>
<th>HDD</th>
<th>6SAS/SATA</th>
<th>12G SAS</th>
<th>PCIE/NVME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Gbe IP</td>
<td>~7 hrs</td>
<td>.4</td>
<td>.15</td>
<td>.08</td>
<td>0.04</td>
</tr>
<tr>
<td>10Gbe IP</td>
<td>~40 min</td>
<td>4</td>
<td>1 ½</td>
<td>~1</td>
<td>0.4</td>
</tr>
<tr>
<td>25Gbe IP</td>
<td>~15 min</td>
<td>10</td>
<td>~3 ½</td>
<td>~2</td>
<td>~1</td>
</tr>
<tr>
<td>40Gbe IP</td>
<td>~10 min</td>
<td>15</td>
<td>~5 ½</td>
<td>~3</td>
<td>~1 ½</td>
</tr>
<tr>
<td>100Gbe IP</td>
<td>~4min</td>
<td>40</td>
<td>~14 ½</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>
Is it the Economics or is it Really about Value

- Flash Fragmenting into Extremes
 - Lowest cost consumer drives
 - ~42c /GB Street. Prosumer Devices
 - Highest capacity, balanced cost/performance
 - 4TB / 8TB Flash Devices
 - Highest performance, high cost, limited capacity

- Application Filter is a Modifier to Value
 - Real-time application ignores cost for performance
 - Big Data requires capacity and cost at performance penalty
 - DB requires middle ground of capacity, cost, and performance
Value – Real Time/Near Real Time

- Characteristics
 - Latency is king (lower the better)
 - High value results (Time to results utmost importance)
 - Completion measured in ms
 - DRAM is expensive and data sets are in 10s or 100s TB
 - PCIe/NVME Cache/Intermediary Store to offset Cost/Performance

- Application
 - In Memory Hyper Cubes
 - In Memory DB (NoSQL)
 - Edge Sensor Analytics

- Values
 - High Rating: Performance (low latency, high IO)
 - High Rating: Capacity in Single TB xx
 - Moderate Rating: Cost
Value – Batch Analytics

- **Characteristics**
 - Large data sets (100s TB - 100s PB)
 - Completion measured in seconds/minutes/hours
 - Bandwidth is king, **was** network bottlenecked

- **Application**
 - Search
 - Commerce/eCommerce
 - Close to core sensor analytics
 - Fraud detection during transaction

- **Value**
 - High Rating: Bandwidth/Aggregate IOPS
 - High Rating: Capacity
 - High Rating: Cost
 - Moderate Rating: Performance (not sub ms latency bound)
Data Lakes?
Or is it really Ponds, Lakes, Rivers, and Oceans

- WAN limitations pushing need for Edge to Core Big Data/Data Reduction
- Common Factor - lack of real estate and power constraints
- As ponds feed lakes, lakes feed ocean
 - Commerce: Retail -> Regional DC -> Source of Truth
 - Sensor Analytics: Critical Infrastructure -> Geolocal DC -> Source of Truth
- LAN getting faster 1->10->25->100->400Gbe striking distance
 - Hyperscale 10Gbe->40Gbe, transceiver change 25Gbe->100Gbe, not a heavy lift
 - WAN still a bottleneck
Big Data Use Cases Where Flash is Displacing Traditional Media

- **InfiniFlash™ System** - Purpose-built for Big Data
 - 64 x 8TB flash cards (500TB)
 - 2+ MIOPS 4k Read (aggregate)
 - 500+ KIOPS 4k Write (aggregate)
 - 15GB/s Chassis level bandwidth (full duplex)
 - 1/10 AFR of HDD
 - (20HDD failure for every InfiniFlash card)
 - Chassis level idle @ less then 200W, active @ 400-500W
 - (Comparative HDD @700W avg)
 - Endurance (multi-exabyte at chassis level)
 - 3U
Big Data Use Cases Where Flash is Displacing Traditional Media... Perspective

- **Active Archive (Rack) - Heavy read, Batch/Periodic Writes (90/10)**
 - 15 IF100, 2 Servers
 - Capacity 7.5PB (6.8PB Usable) vs. 8TB HDD usable @4+PB
 - Bandwidth 255 GB/s vs. HDD @ 30GB/s
 - Power 3KW Idle, 7KW all active vs. HDD @ 9+KW

- **Data Lake Model (Rack) Heavy Read, Moderate Writes (70/30)**
 - 8-12 IF100, 8-12 Servers
 - Capacity 4-6PB
 - Bandwidth up to 180GB/s
 - Power 6KW Active

- **Active Analytics Model (Rack) (50/50)**
 - 4-8 IF100, 8-24 Servers
 - Capacity 2-4 PB
 - Bandwidth up to 120GB/s
 - Power 10KW Very Active
InfiniFlash™ Acquisition vs. Operations Ratio

3 year TCO comparison

Traditional Hadoop

S3 InfiniFlash EC

TCA 3 year TCO
Sensor Analytics / Video Surveillance

- Characteristics
 - Data set size
 - High def – 100KB/s each
 - 4K – 10s MB/s each
 - Source 10,000s or more data generators /sec
 - Capacity and ingest bandwidth key
 - Constrained by rack space/power

In Camera, Real Time x1000s Camera

Value

Time
Federal/State, Commerce, eCommerce, Banking

Large Data Set x Millions Individual
- **Seasonality**
 - Data latent until needed
 - Constant data adjustment
 - Fraud analytics
 - Buying patterns
 - Taxes
- **Resources Highly Inefficient**
 - Procured for high watermark
 - 10% utilized on non-peak
 - All data important, but very long tail
 - Access pattern varies

Q4
Q1
Q2
Q3

Value
Edge To Core

- Sample use cases
 - Retail/eCommerce
 - Critical Infrastructure
 - Banking/Fraud Detection
 - Oil & Gas

- Commonality
 - Unwanted Data Fidelity Reduction from Edge to Core
 - High Value to Analyze at Edge, Regional, and Core
 - High Value to get to Core, WAN Limitations
Key Technologies for Flash Displacement of HDD

- Thicker network pipes (data pump)
- Erasure coding (thesis: Flash will never get below the price of HDD)
 - Deep archive for HDD (1.5x cost multiplier, fail in place enablement)
 - Equivalent to hybrid-based storage arrays on flash (1.15x cost multiplier)
 - With heavy compute requirements for HDD and less so for flash, ‘price’ within all-flash systems are within 20% or less with better ‘TCO’ advantages and still better performance
- Advent of Big Data flash (devices of 4-16TB changes endurance and IO dynamics)
- Throughput optimized flash vs general-purpose flash. Cost savings passed to customer.
- Advent of in-memory applications and fast network
Big Data on Flash: a Performance Perspective

Hadoop Execution phases for different disk configs

For Terasort

2 SSDs

5 SATA 1 SSD /tmp

5 SATA

URL: http://hadoop.bsc.es/perfcharts?benchmarks_length=-1&excs%5B%5D=84766&excs%5B%5D=85322&excs%5B%5D=84824
Hadoop Execution phases for different disk configs (detail)

URL: http://hadoop.bsc.es/perfcharts?benchmarks_length=-1&excs5B%5D=84766&excs5B%5D=84778&excs5B%5D=84808&excs5B%5D=84824&excs5B%5D=84852&metnc=Disk