
Improving MLC flash

performance and endurance

with Extended P/E Cycles

Fabio Margaglia, André Brinkmann

Johannes Gutenberg University, Mainz, Germany

• Flash wear out is dependent on the number of erase

operations

• Many efforts to reduce the erase operations

– Reuse pages through special encodings (WOM codes) and

data structures that exploit the flash properties

– Proven for SLC or in simulation

[Yagmohan et. al, MSST 2010, Odeh et al., MSST 2014, Yadgar et al.,FAST 2015]

• Non of these techniques have ever been implemented within

MLC flash environment

– Is this possible?

– What would be the constraints?

Motivation

4.6.2015 | Fabio Margaglia 1

Page: read/program granularity

Block: erase granularity

Must erase before program (arbitrary data)

P/E Cycle:

1. Program all pages in order, one time

2. Erase entire block

Problems:

1. Erase is slow

2. Need to copy valid pages

3. Wear the flash

Normal P/E Cycles

4.6.2015 | Fabio Margaglia 2

block

page 5

page 4

page 127

page 1

page 3

page 2

page 0

page 126

.

.

.

Extend the P/E cycles:

• Reprogram pages multiple times per cycle

Extended P/E Cycles

4.6.2015 | Fabio Margaglia 3

block

page 5

page 4

page 127

page 1

page 3

page 2

page 0

page 126

.

.

.

Our contribution:

Enable Extended P/E Cycles on MLC

(~) Reprogram pages is not trivial in SLC

(--) Even more difficult in MLC

(+) Reduce the number of erase operations

(+) Reduce internal copying: improve performance

(+) Reduce flash wear out: improve endurance

SLC – Single Level Cell

4.6.2015 | Fabio Margaglia 4

Every SLC is characterized by Vth

• program operations increase Vth

• erase operations reset Vth

• single read point R1

Distinguish between 2 states => 1 bit of information

• Low Vth: ‘1’

• High Vth: ‘0’

Condition for page reprograms: never 0 to 1

Write Once Memory Constraint

Write Once Memory Codes

4.6.2015 | Fabio Margaglia 5

Plain bits 1st gen 2nd gen

00 111 000

01 110 001

10 101 010

11 011 100

[Rivest and Shamir, 1982]

(originally expressed with 0 to 1 constraint)
WOM Codes:

• encode n bits with m wits, where m > n

• encoding organized into WOM compatible generations

01 10

110 010

Example:

Reprogram

WOM compatible data structures

4.6.2015 | Fabio Margaglia 6

B-Tree:

• Initialize nodes with all 1s

• Append new keys, values, pointers
[Kaiser et. al, SYSTOR 2013]

key1, key2 1111111111111 key1, key2, key3 1111111
Reprogram

Bloom Filters:

• Based on bitmap WOM compatible by construction
[Bloom, 1970]

What about MLC?

4.6.2015 | Fabio Margaglia 7

MLC – Multi Level Cell

4.6.2015 | Fabio Margaglia 8

Every MLC is characterized by Vth

• program operations increase Vth

• erase operations reset Vth

• 3 read points R1, R2, R3

Distinguish between 4 states => 2 bits of information

Called Low Bit and High Bit

Condition for page reprograms: WOM constraint is not enough

• Program disturbance between Low Bit and High Bit

[Grupp et. al, MICRO 2009]

MLC – mapping bits to pages

4.6.2015 | Fabio Margaglia 9

Block

page 0

page 1

page 2

page 3

page 4

page 125

page 126

page 127

Low Page High Page

The bits of a single MLC are

mapped to 2 independent pages

Program disturbance across pages

Vth diagram is not the best tool to

understand program disturbance

State Diagram

Erased State

Low Bit: ‘1’

High Bit: ‘1’

State 1

Low Bit: ‘0’

High Bit: ‘1’

State 2

Low Bit: ‘1’

High Bit: ‘0’

State 3

Low Bit: ‘0’

High Bit: ‘0’

State 4

Low Bit: ‘0’

High Bit: ‘1’

P 1 LB
P 1 HB

P 0 LB P 0 HB

P 1 HBP 0 HB

P 1 HB

P 0 HB P 1 HB

P 1 LB
P 0 LB

P 0 LB
P 1 LB

P 0 LB / P 1 HB
P 1 LB / P 0 HB

P 0 LB
P 0 HB
P 1 LB

(1)

(0)

(2)

(3)

(4)

(6)

(5) (7)

(8)

(9)

(10) (11)

4.6.2015 | Fabio Margaglia 10

• Bubbles = flash states with bit values

• Transitions = program operations on single bit

e.g. P 1 LB = program ‘1’ on the Low Bit

Extracted from Samsung 35nm MLC chip

Erased State

Low Bit: ‘1’

High Bit: ‘1’

State 1

Low Bit: ‘0’

High Bit: ‘1’

State 2

Low Bit: ‘1’

High Bit: ‘0’

State 3

Low Bit: ‘0’

High Bit: ‘0’

State 4

Low Bit: ‘0’

High Bit: ‘1’

P 1 LB
P 1 HB

P 0 LB P 0 HB

P 1 HBP 0 HB

P 1 HB

P 0 HB P 1 HB

P 1 LB
P 0 LB

P 0 LB
P 1 LB

P 0 LB / P 1 HB
P 1 LB / P 0 HB

P 0 LB
P 0 HB
P 1 LB

(1)

(0)

(2)

(3)

(4)

(6)

(5) (7)

(8)

(9)

(10) (11)

State Diagram

4.6.2015 | Fabio Margaglia 11

• Bubbles = flash states with bit values

• Transitions = program operations on single bit

e.g. P 1 LB = program ‘1’ on the Low Bit

5 States, 2 with the same bit values

State Diagram: Program the Low Page

4.6.2015 | Fabio Margaglia 12

Erased State

Low Bit: ‘1’

High Bit: ‘1’

State 1

Low Bit: ‘0’

High Bit: ‘1’

State 2

Low Bit: ‘1’

High Bit: ‘0’

State 3

Low Bit: ‘0’

High Bit: ‘0’

State 4

Low Bit: ‘0’

High Bit: ‘1’

P 1 LB
P 1 HB

P 0 LB P 0 HB

P 1 HBP 0 HB

P 1 HB

P 0 HB P 1 HB

P 1 LB
P 0 LB

P 0 LB
P 1 LB

P 0 LB / P 1 HB
P 1 LB / P 0 HB

P 0 LB
P 0 HB
P 1 LB

(1)

(0)

(2)

(3)

(4)

(6)

(5) (7)

(8)

(9)

(10) (11)

State Diagram: Program the High Page

4.6.2015 | Fabio Margaglia 13

Erased State

Low Bit: ‘1’

High Bit: ‘1’

State 1

Low Bit: ‘0’

High Bit: ‘1’

State 2

Low Bit: ‘1’

High Bit: ‘0’

State 3

Low Bit: ‘0’

High Bit: ‘0’

State 4

Low Bit: ‘0’

High Bit: ‘1’

P 1 LB

P 1 HB

P 0 LB P 0 HB

P 1 HBP 0 HB

P 1 HB

P 0 HB P 1 HB

P 1 LB
P 0 LB

P 0 LB
P 1 LB

P 0 LB / P 1 HB
P 1 LB / P 0 HB

P 0 LB
P 0 HB
P 1 LB

(1)

(0)

(2)

(3)

(4)

(6)

(5) (7)

(8)

(9)

(10) (11)

State Diagram: Faulty Transitions

4.6.2015 | Fabio Margaglia 14

Erased State

Low Bit: ‘1’

High Bit: ‘1’

State 1

Low Bit: ‘0’

High Bit: ‘1’

State 2

Low Bit: ‘1’

High Bit: ‘0’

State 3

Low Bit: ‘0’

High Bit: ‘0’

State 4

Low Bit: ‘0’

High Bit: ‘1’

P 1 LB
P 1 HB

P 0 LB P 0 HB

P 1 HBP 0 HB

P 1 HB

P 0 HB P 1 HB

P 1 LB

P 0 LB
P 0 LB

P 1 LB

P 0 LB / P 1 HB

P 1 LB / P 0 HB

P 0 LB
P 0 HB

P 1 LB

(1)

(0)

(2)

(3)

(4)

(6)

(5) (7)

(8)

(9)

(10) (11)

State Diagram: Faulty Transitions

4.6.2015 | Fabio Margaglia 15

Erased State

Low Bit: ‘1’

High Bit: ‘1’

State 1

Low Bit: ‘0’

High Bit: ‘1’

State 2

Low Bit: ‘1’

High Bit: ‘0’

State 3

Low Bit: ‘0’

High Bit: ‘0’

State 4

Low Bit: ‘0’

High Bit: ‘1’

P 1 LB
P 1 HB

P 0 LB P 0 HB

P 1 HBP 0 HB

P 1 HB

P 0 HB P 1 HB

P 1 LB

P 0 LB
P 0 LB

P 1 LB

P 0 LB / P 1 HB

P 1 LB / P 0 HB

P 0 LB
P 0 HB

P 1 LB

(1)

(0)

(2)

(3)

(4)

(6)

(5) (7)

(8)

(9)

(10) (11)

State Diagram: Faulty Transitions

4.6.2015 | Fabio Margaglia 16

WOM constraint alone does not avoid all these transitions

Erased State

Low Bit: ‘1’

High Bit: ‘1’

State 1

Low Bit: ‘0’

High Bit: ‘1’

State 2

Low Bit: ‘1’

High Bit: ‘0’

State 3

Low Bit: ‘0’

High Bit: ‘0’

State 4

Low Bit: ‘0’

High Bit: ‘1’

P 1 LB
P 1 HB

P 0 LB P 0 HB

P 1 HBP 0 HB

P 1 HB

P 0 HB P 1 HB

P 1 LB

P 0 LB
P 0 LB

P 1 LB

P 0 LB / P 1 HB

P 1 LB / P 0 HB

P 0 LB
P 0 HB

P 1 LB

(1)

(0)

(2)

(3)

(4)

(6)

(5) (7)

(8)

(9)

(10) (11)

Our solution

Bimodal usage that allows:

• Page reprograms (only the low pages)

• Uses both high and low page

• Compatible with WOM constraint

4.6.2015 | Fabio Margaglia 17

1st mode: reprogram all low pages with WOM constraint

Bimodal Usage

4.6.2015 | Fabio Margaglia 18

Erased State

Low Bit: ‘1’

High Bit: ‘1’

State 1

Low Bit: ‘0’

High Bit: ‘1’

State 2

Low Bit: ‘1’

High Bit: ‘0’

State 3

Low Bit: ‘0’

High Bit: ‘0’

State 4

Low Bit: ‘0’

High Bit: ‘1’

P 1 LB
P 1 HB

P 0 LB P 0 HB

P 1 HBP 0 HB

P 1 HB

P 0 HB P 1 HB

P 1 LB
P 0 LB

P 0 LB
P 1 LB

P 0 LB / P 1 HB
P 1 LB / P 0 HB

P 0 LB
P 0 HB
P 1 LB

(1)

(0)

(2)

(3)

(4)

(6)

(5) (7)

(8)

(9)

(10) (11)

2nd mode: - stop reprogramming the low pages (still readable)

- program the high pages once (any value)

Bimodal Usage

4.6.2015 | Fabio Margaglia 19

Erased State

Low Bit: ‘1’

High Bit: ‘1’

State 1

Low Bit: ‘0’

High Bit: ‘1’

State 2

Low Bit: ‘1’

High Bit: ‘0’

State 3

Low Bit: ‘0’

High Bit: ‘0’

State 4

Low Bit: ‘0’

High Bit: ‘1’

P 1 LB

P 1 HB

P 0 LB P 0 HB

P 1 HBP 0 HB

P 1 HB

P 0 HB P 1 HB

P 1 LB
P 0 LB

P 0 LB
P 1 LB

P 0 LB / P 1 HB
P 1 LB / P 0 HB

P 0 LB
P 0 HB
P 1 LB

(1)

(0)

(2)

(3)

(4)

(6)

(5) (7)

(8)

(9)

(10) (11)

Prototype

4.6.2015 | Fabio Margaglia 20

Jasmine OpenSSD board

www.openssd-project.org

• ARM7TDMI single core

• SATA interface

• 64MB DRAM

• Samsung 35nm MLC

SSD

Host
Interface

Logic

Controller

FTL

Mapping Tables

Host
Interconnect

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Application

http://www.openssd-project.org

Interface

4.6.2015 | Fabio Margaglia 21

SSD

Host
Interface

Logic

Controller

FTL

Mapping Tables

Host
Interconnect

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Application

Interface augmented:

• read

• write

• overwrite

The application generates WOM compatible data

Other approaches do not modify the interface and use WOM

codes internally (too heavy for the Jasmine controller)

[Yadgar et al., FAST 2015]

• Log structured

• Page Mapped

• Garbage Collection with

greedy strategy

• Overwrite commands are

considered as writes

Baseline Flash Translation Layer

4.6.2015 | Fabio Margaglia 22

SSD

Host
Interface

Logic

Controller

FTL

Mapping Tables

Host
Interconnect

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Flash
Chip

Application

: Programmed page : Empty page

Full Write Blocks

...

Active Write Block

Next write
page

Clean Blocks

...
GC

Blk
full Get

new
blk

Implementing the Bimodal Usage

4.6.2015 | Fabio Margaglia 23

: Reprogrammable page

: Not reprogrammable page

: Empty page

Write Block

Next write
page

Overwrite Block

Next
overwrite

page

Distinguish between 2 types of blocks:

1st Mode

Overwrite bit in the mapping table:

Seal Operation

4.6.2015 | Fabio Margaglia 24

Inverse mapping table

1. Read the inverse mapping table from the last low page

2. Flip the overwrite bits in the main mapping table

3. Set the next write page pointer to use the high pages

Seal

Active Write Block

Next write
page

Full OW Blocks

...

: Reprogrammable page

: Not reprogrammable page

: Empty page

2nd Mode

Putting it all together..

Seal FTL

: Reprogrammable page

Seal

: Not reprogrammable page

: Empty page

Full Write Blocks

...

Active Write Block

Next write
page

Full OW Blocks

...

Active OW Block

Next
overwrite

page

Clean Blocks

...
GC (1)

GC (2)
Blk
full

Blk
full

4.6.2015 | Fabio Margaglia 25

GC strategies

Seal FTL

: Reprogrammable page

Seal

: Not reprogrammable page

: Empty page

Full Write Blocks

...

Active Write Block

Next write
page

Full OW Blocks

...

Active OW Block

Next
overwrite

page

Clean Blocks

...
GC (1)

GC (2)
Blk
full

Blk
full

4.6.2015 | Fabio Margaglia 26

Need new write block:

• Seal

• GC (1)

Victim selection: greedy

Need new overwrite block:

• GC (1)

• GC (2)

Victim selection: greedy

ECC

1.7.2013 | Fabio Margaglia

DATA0 ECC0

• Flash pages have a spare region. Traditionally ECC is

stored there.

• Jasmine limitation: fixed ECC location in the spare region

• Spare region is FLASH as well.

DATA1 ECC1

27

Solution:

• WOM codes with correction capabilities
[Gad et al., “Polar codes for noisy channels”, ISIT 2014]

• Append ECCs in the spare region

• Manage ECC in software

In the evaluation 8 page reprograms are used
• not much gain beyond that [Kaiser et al., SYSTOR2013]

Evaluation

• What is the reliability of the extended P/E cycles?

• How many erase operations can we save?

• How much data is copied internally by GC?

• How is performance affected?

4.6.2015 | Fabio Margaglia 28

Reliability
BER test loop:

• Reprogram 8 times all Low Pages in random order

• Program 1 time all High Pages in page order

• Erase entire block

• WOM compatible data artificially generated (50% bit flipped)

4.6.2015 | Fabio Margaglia 29

Comparison with previous works:

MLC 35nm BER > 10-4 @ 10k P/E cycles
[Grupp et. al, “Bleak future of NAND flash memory”, FAST 2012]

SSD user addressable space (8GB) Overprovisioning (1GB)

Overwrite region Write region

Dataset size (6GB)

Evaluation (1): Benchmark

Micro Benchmark:

4.6.2015 | Fabio Margaglia 30

Parameters:

• Overwrite region percentage (5% to 50%)

• Overwrite skewness (40% to 80%)

• Uniform distribution inside W/OW region

• 32KB write operations

• WOM compatible data generated artificially

Benchmark run:

1. Warmup: write all write region and all overwrite region

2. Run: write/overwrite twice the dataset (12GB) according to parameters

Evaluation (2): # Erase Operations

4.6.2015 | Fabio Margaglia 31

85%

• Corresponds to the number of GC operations

Evaluation (3): Data copied per GC Op.

4.6.2015 | Fabio Margaglia 32

Evaluation (4): Total data copied

4.6.2015 | Fabio Margaglia 33

80%

Evaluation (5): Latency

4.6.2015 | Fabio Margaglia 34

67%

Evaluation (6): Reuse Distance

4.6.2015 | Fabio Margaglia 35

Distances of overwrites on the same LBA (in GB)

for 80% overwrite skewness

* histogram plotted with 1024 bins of size 8 MB each

Evaluation (7): Percentage of reprogram ops.

4.6.2015 | Fabio Margaglia 36

Conclusion

• The extended P/E cycles can be implemented in MLC

• In contrast to SLC, MLCs pose more challenges

• This technique is very effective for hot data limited in size

4.6.2015 | Fabio Margaglia 37

Thanks for Your Attention

Questions?

All code can be found at

https://github.com/zdvresearch

We are hiring!

https://research.zdv.uni-mainz.de

Contact:

margagl@uni-mainz.de

brinkmann@uni-mainz.de

https://github.com/zdvresearch

Related Work

• Previous flash studies confirm our findings

– [Grupp. et al, MICRO 2009]

• WOM codes are actively developed

– Polar WOM [Burshtein and Strugatski, IT 2013]

• WOM compatible data structures are under study

– B-Tree [Kaiser et al, SYSTOR 2013]

• FTL designs that do not change the SSD interface

– [Yadgar et al, FAST 2015]

4.6.2015 | Fabio Margaglia 40

