SSD-Optimized Workload Placement with Adaptive Learning and Classification in HPC Environments

Lipeng Wan, Zheng Lu, Qing Cao
lwan1@utk.edu, zlu12@utk.edu, cao@utk.edu

Feiyi Wang, Sarp Oral, Bradley Settlemyer
fwang2@ornl.gov, oralhs@ornl.gov, settlemyerbw@ornl.gov
Outline

- Introduction
- System Design
- Data Popularity Prediction
- Data Placement Model
- Evaluation
- Conclusions
- Future Work
Introduction: Challenges

- Challenges of developing resilient and efficient storage system for HPC applications
 - Massive data is being generated
 - I/O workload evolves overtime
 - Flash-based storage devices might be used in HPC environments
Introduction: Scenario

- Scenario we focus on
 - All-flash storage solution is expensive for HPC environments, not feasible in practice
 - One possible way is designing storage systems consist of both SSDs & HDDs, in which only small portion of storage devices are SSDs
Introduction: Existing Work

- Some existing work on data placement algorithms and heterogeneous storage system design in HPC environments

<table>
<thead>
<tr>
<th>Data placement algorithms</th>
<th>Heterogeneous storage system design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Hash Tables (DHTs), chain placement, RUSH, CRUSH, etc.</td>
<td>Flashcache, iTransformer, SieveStore, Hystor, I_CASH, ComboDrive, etc.</td>
</tr>
</tbody>
</table>

- Effective data placement algorithms designed for heterogeneous storage system are still needed
Introduction: Our Contributions

- Two major contributions of our work:
 - Designed an adaptive learning algorithm to capture the dynamics of data access in HPC environments which can be exploited by data placement algorithms
 - Proposed an optimization model for data placement among heterogeneous storage devices without violating the user policies, such as replication schemes
System Design: Intuition

- Intuition of improving heterogeneous storage systems’ performance:
 - Put data objects that will be most frequently accessed in the future on SSDs

- But how?
 - How to predict future access frequency of data objects?
 - How to place data objects among heterogeneous storage devices with putting the user policies into consideration?
System Design: Solution

- Our solution

![Diagram showing system design process]

- Prediction Model Training
- Continuous Training
- Runtime Objects Access
- Model Parameters
- I/O Workload Prediction
- Prediction on Data Popularity
- User Policies
- Data Placement Engine
- Traces
- Data Objects Access History
- SSDs
Data Popularity Prediction: Requirement

- Most of existing work tried to predict the data popularity by simply counting the access times of each data block
- We think more complex model should be built so that the dynamics of data access can be captured more accurately
Data Popularity Prediction: Solution

- Our solution: Markov chain based prediction
 - Inspired by existing work on network traffic prediction
 - Can capture dynamics of streaming data
Data Popularity Prediction: Model Training

- **Training data**
 - Only recent access history of each data object is maintained and updated periodically
 - A tradeoff between data collection overhead and prediction accuracy
Data Popularity Prediction: Training Data Collection
Data Popularity Prediction: Parameter Estimation

- Transition diagram

- Estimate the transition matrix of Markov chain using the access history data
Data Popularity Prediction: Prediction

- Calculate the stationary distribution of Markov chain
- Rank the data objects
 - Use a weighted sum of stationary distribution to rank future popularity of data objects
Data Placement Model: Framework

- Linear programming model
 - Optimization objective function and constrains

\[
\begin{align*}
\text{maximize} & \quad \sum_{i \in M} f_i \times \max[\forall j \in N, at_j \times e_{ij}] \\
\text{subject to} & \quad \sum_{j \in N} e_{ij} = cp_i, \forall i \in M \\
& \quad \sum_{\forall i \text{ s.t. } e_{ij}=1} d_{si} \leq cs_j, \forall j \in N \\
& \quad \text{......}
\end{align*}
\]

more constrains from user policies
Evaluation: Realistic I/O Traces

- Evaluation is based on LASR traces
 - Long-term I/O traces collected at system-call level
Evaluation: Average Read Throughput Results

- Average read throughput comparison between our approach and baseline

![Graph showing average read throughput comparison between with prediction and without prediction (randomly select) against % of devices that are SSD.](image)
Conclusions

- Designed an adaptive learning algorithm to predict future access frequency of data objects
- Proposed an optimization model for data placement among heterogeneous storage devices with putting the user policies into consideration
Future Work

- Better model to capture the dynamics of I/O workload pattern
 – Predict not only access frequency, but also access pattern, such as random/sequential read/write, etc.

- Better model to optimize data placement
 – Optimize not only the average throughput, but also the reliability
Questions?

Thank you!