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Main Objective

» Improve device performance - speed, power and lifetime
» Reduce device cost per bit (silicon space)
» Require minimal / no changes to NAND storage unit

Method:

» Propose architectures that cleverly use Multi Write Codes




Problem: No In-Place Writes
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Write Amplification (WA)

» Malady: Write-Amplification

» Adding spare blocks reduces WA (over-provisioning)

» Example:
» Writes:

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

[Agarwal et. al 2010, Desnoyers 2012,...]




Write Amplification (WA)

» Malady: Write-Amplification
» Adding spare blocks reduces WA

» Example:
» Writes: 0,4,8,12, —6— —4— —8— <=
1 5 9 13
2 6 10 14
3 7 11 15

[Agarwal et. al 2010, Desnoyers 2012,...]




Write Amplification (WA)

» Malady: Write-Amplification
» Adding spare blocks reduces WA

» Example:
» Writes: 0,4,8,12,1 2 —4— —8— <=
3 5 9 13
1 6 10 14
7 11 15

[Agarwal et. al 2010, Desnoyers 2012,...]




Multi-Write Codes

» Remedy: Multi-Write Codes
» Up to t>1 writes before erase!

» Examplet=2

0 8 12
1 9 13
2 10 14
3 11 15




Multi-Write Codes

» Remedy: Multi-Write Codes

» Up tot writes before erase!
» Examplet=2

» Writes: 0,1,2,4,5,6,8,9,10,12

» Invalid

» Written twice




Multi-Write Codes

» Remedy: Multi-Write Codes
» Up tot writes before erase!
» Examplet=2
» Writes: 0,1,2,4,5,6,8,9,10,12,0,4,8,12

» Invalid

» Written twice




Multi-Write Codes

» Remedy: Multi-Write Codes
» Up tot writes before erase!
» Examplet=2
» Writes: 0,1,2,4,5,6,8,9,10,12,0,4,8,12,1
» # Writes:4 > 14

» Invalid

» Written twice




The Tradeoff of Multi-Write Codes

» More in-place writes = higher code redundancy

» Code redundancy shrinks spare available for WA reduction

» Research question: can Multi-Write codes reduce overall WA?




t=2 Multi-Write Codes

» Q: How big is the physical page for t=2 writes? (expansion-factor)

» A: capacity-achieving WOM codes:

|physical page| = Zlongl |logical page|
logz(qz )
g=2 SLC
gq=4 MLC
» For t=2,q=2; expansion of data: ~1.26 g=8 TLC

» For t=2,q=8; expansion of data: ~1.16

Higher g - lower expansion

[Luojie, Kurkoski, Yaakobi, 2012]



Prior Work

» Multi-write + compression

[Jagmohan, Franceschini, Lastras, 2010]

» Analysis of WA w/ multi-write codes
[Luojie, Kurkoski, Yaakobi, 2012]




Known Results
[Luojie, Kurkoski, Yaakobi, 2012]

» Multi Write codes reduce WA when
1. Spare > 75% for SLC (g=2)
2. Spare > 55% for MLC (q=4)
3. Spare > 40% for TLC (q=8)




Partial Re-Write

» A natural idea:

Vv

t=1
no re-write, no overhead

» The challenge:

Which writes should get re-write capabilities?
The Answer: the writes that will be rewritten before erasure.




Re-Write Differentiation

» The Policy:
» Perform t=2 coding for all incoming user-writes

» Write without coding (t=1) all garbage-collection writes

» Observation:

» With high likelihood, user writes will be rewritten soon (temporal-locality)




Double-Fronted Architecture
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Selective (Single-Fronted) Architecture
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Evaluation
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Trace Results - TLC
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Trace Results - SLC
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Synthetic Workloads: p-Locality

P ‘ h-logical
» p - the probability for a “hot” write | pages
» Write is chosen uniformly from a pool of hot pages
» h - the size of the hot pool
1-p

» 1-p - the probability for a “cold” write

» Write will be chosen from the rest of the pages The rest

of logical
pages

» The “cold” page is turned to “hot”




p-Locality Results
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Real Implementation

» Problem: Variable Page Size
» some pages use t=2 (larger).

» some use t=1 (smaller).

» Solution:
» w/o flash vendors support

» w/ flash vendors support




w/o Flash Vendors Support 1

Expansion = 1.5

» Normal Page Allocation E

» Normal pages - no change 2

» Expanded pages - grouped together

» Read penalty
» In-place write > RMW




w/o Flash Vendors Support 2

Expansion = 1.5

1 3
» Expanded Page Allocation i - -3— --

» Expanded pages - no change

» Normal pages - grouped together

» GC pages are grouped and written together

» Write (Scatter) - no penalty
» Read (Gather) - read penalty




w/ Flash Vendors Support

» Split pages are shifted

» Parallel circuit read
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» No penalty/ overhead

» Vendor support: Split word-line read
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Device Diagram
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The Block Life Cycle - Analysis
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Conclusion

» New scheme to improve WA with selective MW-writes
» Insensitive to specific workload properties

» Good potential for SSD deployment




