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Main Objective

 Improve device performance - speed, power and lifetime

 Reduce device cost per bit (silicon space)

 Require minimal / no changes to NAND storage unit

Method:

 Propose architectures that cleverly use Multi Write Codes



Problem: No In-Place Writes

 Page - write / read unit

 Block – erasure unit
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Write Amplification (WA)

 Malady: Write-Amplification

 Adding spare blocks reduces WA (over-provisioning)

 Example:

 Writes: 12840

13951

141062

151173

[Agarwal et. al 2010, Desnoyers 2012,…]



Write Amplification (WA)

 Malady: Write-Amplification

 Adding spare blocks reduces WA

 Example:

 Writes: 0,4,8,12, 012840

413951

8141062

12151173

[Agarwal et. al 2010, Desnoyers 2012,…]



Write Amplification (WA)

 Malady: Write-Amplification

 Adding spare blocks reduces WA

 Example:

 Writes: 0,4,8,12,1 012840

413951

8141062

12151173

[Agarwal et. al 2010, Desnoyers 2012,…]
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Multi-Write Codes

 Remedy: Multi-Write Codes

 Up to t > 1 writes before erase!

 Example t = 2

12840

13951

141062
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Multi-Write Codes

 Remedy: Multi-Write Codes

 Up to t writes before erase!

 Example t = 2

 Writes: 0,1,2,4,5,6,8,9,10,12

 Invalid

 Written twice
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Multi-Write Codes

 Remedy: Multi-Write Codes

 Up to t writes before erase!

 Example t = 2

 Writes: 0,1,2,4,5,6,8,9,10,12,0,4,8,12

 Invalid

 Written twice

012840

413951

8141062

12151173
4

5



Multi-Write Codes

 Remedy: Multi-Write Codes

 Up to t writes before erase!

 Example t = 2

 Writes: 0,1,2,4,5,6,8,9,10,12,0,4,8,12,1

 # Writes : 4  14

 Invalid

 Written twice

012840

413951

8141062

12151173
4
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The Tradeoff of Multi-Write Codes

 More in-place writes  higher code redundancy

 Code redundancy shrinks spare available for WA reduction

 Research question: can Multi-Write codes reduce overall WA?



t=2 Multi-Write Codes

 Q: How big is the physical page for t=2 writes? (expansion-factor)

 A: capacity-achieving WOM codes:

physical page =
2log2𝑞

log2
𝑞+1
2

|logical page|

 For t=2,q=2; expansion of data: ~1.26

 For t=2,q=8; expansion of data: ~1.16

Higher q  lower expansion

q=2  SLC

q=4  MLC 

q=8  TLC 

[Luojie, Kurkoski, Yaakobi, 2012]



Prior Work

 Multi-write + compression 

[Jagmohan, Franceschini, Lastras, 2010]

 Analysis of WA w/ multi-write codes

[Luojie, Kurkoski, Yaakobi, 2012]



Known Results

 Multi Write codes reduce WA when

1. Spare > 75% for SLC (q=2)

2. Spare > 55% for MLC (q=4)

3. Spare > 40% for TLC (q=8)

Cost likely too high for SSD deployment

[Luojie, Kurkoski, Yaakobi, 2012]



Partial Re-Write

 A natural idea:

 The challenge:

Which writes should get re-write capabilities?

The Answer: the writes that will be rewritten before erasure.

t=1

no re-write, no overhead

t=2 



Re-Write Differentiation

 The Policy:

 Perform t=2 coding for all incoming user-writes

 Write without coding (t=1) all garbage-collection writes

 Observation:

 With high likelihood, user writes will be rewritten soon (temporal-locality)



Double-Fronted Architecture
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Selective (Single-Fronted) Architecture
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Evaluation



Trace Results - TLC
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Trace Results - SLC
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Synthetic Workloads: p-Locality 

h-logical 

pages

The rest

of logical

pages

p

1-p

 p – the probability for a “hot” write

 Write is chosen uniformly from a pool of hot pages

 h – the size of the hot pool

 1-p – the probability for a “cold” write

 Write will be chosen from the rest of the pages

 The “cold” page is turned to “hot”



p-Locality Results
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Real Implementation

 Problem: Variable Page Size

 some pages use t=2 (larger).

 some use t=1 (smaller).

 Solution:

 w/o flash vendors support

 w/ flash vendors support



w/o Flash Vendors Support 1

 Normal Page Allocation

 Normal pages – no change

 Expanded pages – grouped together

 Read penalty

 In-place write  RMW
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w/o Flash Vendors Support 2

 Expanded Page Allocation

 Expanded pages – no change

 Normal pages – grouped together

 GC pages are grouped and written together

 Write (Scatter) - no penalty

 Read (Gather) – read penalty
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w/   Flash Vendors Support

 Split pages are shifted

 Parallel circuit read

 No penalty/ overhead

 Vendor support: Split word-line read
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Device Diagram
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The Block Life Cycle - Analysis
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Conclusion

 New scheme to improve WA with selective MW-writes

 Insensitive to specific workload properties

 Good potential for SSD deployment


