Bl EE=Electronics

l o A
H BEEEs=Computers
M | TeChnlon BEEEs=commun ications

NAND Flash Architectures
Reducing Write Amplification
Through Multi-Write Codes

Saher Odeh MSST 2014

Yuval Cassuto
: June 6th
Technion-EE

Main Objective

» Improve device performance - speed, power and lifetime
» Reduce device cost per bit (silicon space)
» Require minimal / no changes to NAND storage unit

Method:

» Propose architectures that cleverly use Multi Write Codes

Problem: No In-Place Writes

HOST

~

M——>0<X <IT
&
-
o

T yes

Storage

Media

User Data
(unrestricted) \

» Page - write / read unit

page
block

» Block - erasure unit

Write Amplification (WA)

» Malady: Write-Amplification

» Adding spare blocks reduces WA (over-provisioning)

» Example:
» Writes:

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

[Agarwal et. al 2010, Desnoyers 2012,...]

Write Amplification (WA)

» Malady: Write-Amplification
» Adding spare blocks reduces WA

» Example:
» Writes: 0,4,8,12, —6— —4— —8— <=
1 5 9 13
2 6 10 14
3 7 11 15

[Agarwal et. al 2010, Desnoyers 2012,...]

Write Amplification (WA)

» Malady: Write-Amplification
» Adding spare blocks reduces WA

» Example:
» Writes: 0,4,8,12,1 2 —4— —8— <=
3 5 9 13
1 6 10 14
7 11 15

[Agarwal et. al 2010, Desnoyers 2012,...]

Multi-Write Codes

» Remedy: Multi-Write Codes
» Up to t>1 writes before erase!

» Examplet=2

0 8 12
1 9 13
2 10 14
3 11 15

Multi-Write Codes

» Remedy: Multi-Write Codes

» Up tot writes before erase!
» Examplet=2

» Writes: 0,1,2,4,5,6,8,9,10,12

» Invalid

» Written twice

Multi-Write Codes

» Remedy: Multi-Write Codes
» Up tot writes before erase!
» Examplet=2
» Writes: 0,1,2,4,5,6,8,9,10,12,0,4,8,12

» Invalid

» Written twice

Multi-Write Codes

» Remedy: Multi-Write Codes
» Up tot writes before erase!
» Examplet=2
» Writes: 0,1,2,4,5,6,8,9,10,12,0,4,8,12,1
» # Writes:4 > 14

» Invalid

» Written twice

The Tradeoff of Multi-Write Codes

» More in-place writes = higher code redundancy

» Code redundancy shrinks spare available for WA reduction

» Research question: can Multi-Write codes reduce overall WA?

t=2 Multi-Write Codes

» Q: How big is the physical page for t=2 writes? (expansion-factor)

» A: capacity-achieving WOM codes:

|physical page| = Zlongl |logical page|
logz(qz)
g=2 SLC
gq=4 MLC
» For t=2,q=2; expansion of data: ~1.26 g=8 TLC

» For t=2,q=8; expansion of data: ~1.16

Higher g - lower expansion

[Luojie, Kurkoski, Yaakobi, 2012]

Prior Work

» Multi-write + compression

[Jagmohan, Franceschini, Lastras, 2010]

» Analysis of WA w/ multi-write codes
[Luojie, Kurkoski, Yaakobi, 2012]

Known Results
[Luojie, Kurkoski, Yaakobi, 2012]

» Multi Write codes reduce WA when
1. Spare > 75% for SLC (g=2)
2. Spare > 55% for MLC (q=4)
3. Spare > 40% for TLC (q=8)

Partial Re-Write

» A natural idea:

Vv

t=1
no re-write, no overhead

» The challenge:

Which writes should get re-write capabilities?
The Answer: the writes that will be rewritten before erasure.

Re-Write Differentiation

» The Policy:
» Perform t=2 coding for all incoming user-writes

» Write without coding (t=1) all garbage-collection writes

» Observation:

» With high likelihood, user writes will be rewritten soon (temporal-locality)

Double-Fronted Architecture

hotBlocksCount

User Writes ‘ i i

GC Write-backs

[GC (Empty Pool) }

Invalid ;
Hot State
Cold State

Selective (Single-Fronted) Architecture

User Writes
@ A

GC Write-backs

Invalid
@ Cold

[
.

GC (Empty Pool)

-

)
)

Evaluation

SNIA

IOTTA Repository

Advancing storage

* REPOSITORY HOME E E * JOIN IOTTA * CONTRIBUTE * SNIA HOME

Tools Home » Traces » Block I/O Traces » MSR Cambridge Traces
Traces

GO

MSR Cambridge Traces

oo The following traces are free to download under the terms of the SMIA Trace Data Files Download License. Please note that cookies must be

enabled within your browser in order to download traces.
£ For questions about downloading using a shell script, see Using Shell Scripts, and for more information about downloading using a Windows
batch script, see Using Batch Scripts.

GO
View Additional Columns
= Trace Name Details Actions
- J i i
- MSR Cambridge Traces 1 1-week block /O traces of enterprise servers at Microsoft Download Sample -

Long Description

') = Ill i i
1 WANT TO MSR Cambridge Traces 2 1-week block I/0 traces of enterprise servers at Microsoft Download Readme -
Long Description

Choose One -

Trace Results - TLC

PRXY q=8
——REG_RW1 -=-REG_RW2 —+Selective —<D_FRONT
5
4
§3 %
2)T A— +
S e — :'j :ﬁ
1 —x
0

10% 15% 20% 25% 30% 35% 40% 45% 50%
Spare

Trace Results - SLC

PRXY q=2
——REG_RW1 -=-REG_RW2 -—+Selective_RW2 —<D_FRONT

3
E N
2 — B — ——

+:::::fj

10% 15% 20% 25% 30% 35% 40% 45% 50%
Spare

Synthetic Workloads: p-Locality

P ‘ h-logical
» p - the probability for a “hot” write | pages
» Write is chosen uniformly from a pool of hot pages
» h - the size of the hot pool
1-p

» 1-p - the probability for a “cold” write

» Write will be chosen from the rest of the pages The rest

of logical
pages

» The “cold” page is turned to “hot”

p-Locality Results

SYNTHETIC q=8 SPARE=10%
——REG_RW1 -+-Selective —<D_FRONT

8
7
6
5
Sa
3
2
1
0
SESIPYSPOPSLOELNPE SIS

Real Implementation

» Problem: Variable Page Size
» some pages use t=2 (larger).

» some use t=1 (smaller).

» Solution:
» w/o flash vendors support

» w/ flash vendors support

w/o Flash Vendors Support 1

Expansion = 1.5

» Normal Page Allocation E

» Normal pages - no change 2

» Expanded pages - grouped together

» Read penalty
» In-place write > RMW

w/o Flash Vendors Support 2

Expansion = 1.5

1 3
» Expanded Page Allocation i - -3— --

» Expanded pages - no change

» Normal pages - grouped together

» GC pages are grouped and written together

» Write (Scatter) - no penalty
» Read (Gather) - read penalty

w/ Flash Vendors Support

» Split pages are shifted

» Parallel circuit read

o<
~
4

» No penalty/ overhead

» Vendor support: Split word-line read

WLn

"

Device Diagram

Mapping Translation Layer NAND Flash Device
e \\
User Writes = N
»Z

v Encoding : » Page Aggregation Module) Frnt Free
/
User Reads (_ 5)\
Write-backs

A 4

Metadata Read/Update Erasures
> GC < : |
Frnt Allocation
Metadata
! LPA-PPA Mapping PPA-LPA Mapping= PB Table
' LPA | PPA PPA [LPA | Statys [Writes | Coding PBA | #Valids

The Block Life Cycle - Analysis

Pages _ Xo+ Ty
==

=

Frontier “recent-page” “out”

Conclusion

» New scheme to improve WA with selective MW-writes
» Insensitive to specific workload properties

» Good potential for SSD deployment

