
NAND Flash Architectures 

Reducing Write Amplification 

Through Multi-Write Codes

MSST 2014

June 6th

Saher Odeh

Yuval Cassuto

Technion-EE



Main Objective

 Improve device performance - speed, power and lifetime

 Reduce device cost per bit (silicon space)

 Require minimal / no changes to NAND storage unit

Method:

 Propose architectures that cleverly use Multi Write Codes



Problem: No In-Place Writes

 Page - write / read unit

 Block – erasure unit

HOST
Storage

Media
User Data 

(unrestricted)

P
H
Y

W
R
I
T
E

↑ yes

↓ no 

block
page



Write Amplification (WA)

 Malady: Write-Amplification

 Adding spare blocks reduces WA (over-provisioning)

 Example:

 Writes: 12840

13951

141062

151173

[Agarwal et. al 2010, Desnoyers 2012,…]



Write Amplification (WA)

 Malady: Write-Amplification

 Adding spare blocks reduces WA

 Example:

 Writes: 0,4,8,12, 012840

413951

8141062

12151173

[Agarwal et. al 2010, Desnoyers 2012,…]



Write Amplification (WA)

 Malady: Write-Amplification

 Adding spare blocks reduces WA

 Example:

 Writes: 0,4,8,12,1 012840

413951

8141062

12151173

[Agarwal et. al 2010, Desnoyers 2012,…]

2

3

1



Multi-Write Codes

 Remedy: Multi-Write Codes

 Up to t > 1 writes before erase!

 Example t = 2

12840

13951

141062

151173



Multi-Write Codes

 Remedy: Multi-Write Codes

 Up to t writes before erase!

 Example t = 2

 Writes: 0,1,2,4,5,6,8,9,10,12

 Invalid

 Written twice

12840

13951

141062

151173
4

5



Multi-Write Codes

 Remedy: Multi-Write Codes

 Up to t writes before erase!

 Example t = 2

 Writes: 0,1,2,4,5,6,8,9,10,12,0,4,8,12

 Invalid

 Written twice

012840

413951

8141062

12151173
4

5



Multi-Write Codes

 Remedy: Multi-Write Codes

 Up to t writes before erase!

 Example t = 2

 Writes: 0,1,2,4,5,6,8,9,10,12,0,4,8,12,1

 # Writes : 4  14

 Invalid

 Written twice

012840

413951

8141062

12151173
4

5

2

3

1



The Tradeoff of Multi-Write Codes

 More in-place writes  higher code redundancy

 Code redundancy shrinks spare available for WA reduction

 Research question: can Multi-Write codes reduce overall WA?



t=2 Multi-Write Codes

 Q: How big is the physical page for t=2 writes? (expansion-factor)

 A: capacity-achieving WOM codes:

physical page =
2log2𝑞

log2
𝑞+1
2

|logical page|

 For t=2,q=2; expansion of data: ~1.26

 For t=2,q=8; expansion of data: ~1.16

Higher q  lower expansion

q=2  SLC

q=4  MLC 

q=8  TLC 

[Luojie, Kurkoski, Yaakobi, 2012]



Prior Work

 Multi-write + compression 

[Jagmohan, Franceschini, Lastras, 2010]

 Analysis of WA w/ multi-write codes

[Luojie, Kurkoski, Yaakobi, 2012]



Known Results

 Multi Write codes reduce WA when

1. Spare > 75% for SLC (q=2)

2. Spare > 55% for MLC (q=4)

3. Spare > 40% for TLC (q=8)

Cost likely too high for SSD deployment

[Luojie, Kurkoski, Yaakobi, 2012]



Partial Re-Write

 A natural idea:

 The challenge:

Which writes should get re-write capabilities?

The Answer: the writes that will be rewritten before erasure.

t=1

no re-write, no overhead

t=2 



Re-Write Differentiation

 The Policy:

 Perform t=2 coding for all incoming user-writes

 Write without coding (t=1) all garbage-collection writes

 Observation:

 With high likelihood, user writes will be rewritten soon (temporal-locality)



Double-Fronted Architecture

frntH

GC (Empty Pool)

frntG

User Writes

GC Write-backs

hotBlocksCount

t=1

t=2

Invalid 

Hot State 

Cold State 



Selective (Single-Fronted) Architecture

frnt

GC (Empty Pool)

User Writes

GC Write-backs

Invalid 

Hot 

Cold 



Evaluation



Trace Results - TLC

0

1

2

3

4

5

10% 15% 20% 25% 30% 35% 40% 45% 50%

W
A

Spare

PRXY q=8

REG_RW1 REG_RW2 Selective D_FRONT



Trace Results - SLC

0

1

2

3

4

5

10% 15% 20% 25% 30% 35% 40% 45% 50%

W
A

Spare

PRXY q=2

REG_RW1 REG_RW2 Selective_RW2 D_FRONT



Synthetic Workloads: p-Locality 

h-logical 

pages

The rest

of logical

pages

p

1-p

 p – the probability for a “hot” write

 Write is chosen uniformly from a pool of hot pages

 h – the size of the hot pool

 1-p – the probability for a “cold” write

 Write will be chosen from the rest of the pages

 The “cold” page is turned to “hot”



p-Locality Results

0

1

2

3

4

5

6

7

8

W
A

p

SYNTHETIC q=8 SPARE=10%

REG_RW1 Selective D_FRONT



Real Implementation

 Problem: Variable Page Size

 some pages use t=2 (larger).

 some use t=1 (smaller).

 Solution:

 w/o flash vendors support

 w/ flash vendors support



w/o Flash Vendors Support 1

 Normal Page Allocation

 Normal pages – no change

 Expanded pages – grouped together

 Read penalty

 In-place write  RMW

1

1

2

21

Expansion = 1.5



w/o Flash Vendors Support 2

 Expanded Page Allocation

 Expanded pages – no change

 Normal pages – grouped together

 GC pages are grouped and written together

 Write (Scatter) - no penalty

 Read (Gather) – read penalty

1

2

3

3

Expansion = 1.5



w/   Flash Vendors Support

 Split pages are shifted

 Parallel circuit read

 No penalty/ overhead

 Vendor support: Split word-line read

𝑉𝑖𝑛𝑡𝑉𝑜𝑛

𝑉𝑖𝑛𝑡 𝑉𝑜𝑓𝑓

𝑉𝑜𝑓𝑓𝑉𝑜𝑛

𝑉𝑜𝑓𝑓

𝑉𝑜𝑛

𝑉𝑜𝑛

WL1

WL2

WL3

WLn

BL1 BLm



Device Diagram

Frnt Free

NAND Flash DeviceMapping Translation Layer

Metadata

LPA PPA

LPA-PPA Mapping

PPA LPA

PPA-LPA Mapping

Status PBA #Valids

PB Table

GC

User Writes

Metadata Read/Update Erasures
Frnt Allocation

Page Aggregation Module

Write-backs

Encoding

User Reads
Decoding Look-up

Writes Coding



The Block Life Cycle - Analysis

Frontier “recent-page” “out”

𝑥0

GC

𝑥0

𝑛

𝑇𝑥

𝑊𝐴 =
𝑥0 + 𝑇𝑥
𝑇𝑥

𝑇𝑞

 𝑁

t (logical writes)

# Pages



Conclusion

 New scheme to improve WA with selective MW-writes

 Insensitive to specific workload properties

 Good potential for SSD deployment


