Semi-RAID: A Reliable Energy-Aware RAID Data Layout for Sequential Data Access

Li Xiao Tan Yu-An Sun Zhizhuo
Beijing Institute of Technology
Outline

- Introduction to RAID architecture
- Storage requirement of video surveillance system
- Pros and Cons of traditional RAID architecture
- The idea of Semi-RAID (S-RAID)
- S-RAID 4 and S-RAID 5 data layout
- Improvement of S-RAID by grouping
- Power consumption and Performance of S-RAID
What is RAID?

- RAID combines multiple disk drive components into a logical unit.
- Data is distributed across the drives in one of several ways called "RAID levels".
- Advantages of RAID:
 - Increasing the reliability of data storage
 - Improving the read/write performance of data access
Introduction RAID architecture

RAID-4

- Improve performance by block-level striping
- Exploit XOR parity for fault tolerance
- Use one dedicated parity disk (bottleneck)

\[
P = \bigoplus_i D_i = D_0 \bigoplus D_1 \bigoplus \cdots \bigoplus D_{n-1}
\]

\[
P_k = \bigoplus_{i=0}^{n-1} B_{i,k}
\]

\[
= B_{0,k} \bigoplus B_{1,k} \bigoplus \cdots \bigoplus B_{n-1,k}
\]
Introduction to RAID architecture

RAID-5

- Improve performance by block-level striping
- Exploit XOR parity for fault tolerance
- Distribute parity blocks across data disk
• **Large storage capacity**

 ➢ A disk array of 16 2TB-disk has 30TB available capacity

 ➢ Assume 2Mb/s video code rate, 30TB storage space is capable for video data of (Day • Channel):
 ➢ $24 \times 3600 \times 2 \text{Mb/s} = 24 \times 3600 \times 0.25 \text{MB} = 21.6 \text{GB}$
 ➢ $30 \text{TB}/21.6 \text{GB} = 30000 \text{GB}/21.6 \text{GB} = 1388 \text{ Days}$

 ➢ With One camera installed, The disk array can keep 1388 days’ video data.

 ➢ With 32 cameras installed, The disk array can keep $1388/32 \approx 43 \text{ days’ video data.}$
High reliability

- Users of video surveillance system (airport, prison, etc.) need to meet strict regulations.
- Video surveillance system runs 24/7.
- Video fragment loss will cause extreme high risk, so the intact of data must be guaranteed.
- Performance of the video surveillance must be guaranteed in degraded mode and rebuild mode of RAID.
• **Moderate performance**

 ➢ To support 32 cameras saving video data concurrently, the disk array should have a write bandwidth of

 ➢ $32 \times 2\text{Mb/s} = 32 \times 0.25\text{MB/s} = 8\text{MB/s}$

 ➢ Indeed, 32 cameras only write 8MB data every second.

 ➢ $100 \text{ Cameras: } 100 \times 0.25\text{MB/s} = 25\text{MB/s}$
Advantages of traditional RAID

• Large Storage Capacity requirement
 - It can be satisfied
 - Disk array supports at least 16 disks, scales well through Disk Expansion Enclosure.

• Data protection requirement
 - It can be satisfied
 - Use RAID-4/5, data can be rebuilt during disk failure

• Performance requirement
 - It can be satisfied, but don’t take full advantage of the performance of disk array
 - 32 cameras only need 8MB/s, 100 cameras only need 25MB/s
Disadvantages of traditional RAID

- High failure rate of individual disk
 - Disk lifetime depends on its working hours
 - All disks in RAID work 7X24 hours

- Current solution: divides RAID into sub-RAID systems, idle sub-RAID can be put into sleep
 - Every sub-RAID needs a separate parity disk
 - Management of the sub-RAIDs is complicated.
Disadvantages of traditional RAID

Partitioning the storage system into RAID systems.
Disadvantages of traditional RAID

• High power consumption
 - Video surveillance has a moderate requirement on performance, it can be satisfied by one or a few disks’ bandwidth.
 - To meet the high performance requirement, a plurality of disks must work parallel
 - All disks in RAID work 7X24 hours, consuming large amount of energy.
 - The high performance provided by parallel working disks cannot be exploited by video surveillance application
 - The heat generated by high-load disks needs extra cooling system
Observations

- Video surveillance system doesn’t need many disks work parallel
 - Rearranging the video stream data sequentially can save multi-channel video data into a single disk
 - Performance of a single disk can satisfy the requirement
 - The sequential write speed of SATA disk is around 100MB/s

Seagate 2TB SATA Test Results:

<table>
<thead>
<tr>
<th>Seagate Barracuda XT (2TB)</th>
<th>HDD Tune Pro(read)</th>
<th>HDD Tune Pro(write)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65.1</td>
<td>112.4</td>
</tr>
<tr>
<td></td>
<td>141.8</td>
<td>287.3</td>
</tr>
</tbody>
</table>
The ideas of Semi-RAID (S-RAID)

- **Target:**
 - In a RAID system, all disks are not working parallel, only a few disks need to be in active mode.
 - Preserve the data protection function of traditional RAID.

S-RAID is not DVR (DVR is equivalent to Non-RAID)
- DVR writes data to a single disk, and only move to the second disk when the first disk is full.
- DVR has no data protection function.
The ideas of Semi-RAID (S-RAID)

Ideas:

• S-RAID doesn’t need stripping

• Rearrange the data layout to make it suitable for video surveillance and other applications alike.
S-RAID 4 resembles RAID 4 in:

- Data is stored in data blocks
- Exploit XOR parity for fault tolerance
- Use one dedicated parity disk (bottleneck)

S-RAID 4 differs from RAID 4 in:

- Data Layout (like N-RAID)
 Disks cannot work in parallel to increase performance when reading / writing LBA adjacent data blocks
S-RAID 4 Data Layout

Data Layout of Semi-RAID 4

<table>
<thead>
<tr>
<th>Stripe</th>
<th>D₀</th>
<th>D₁</th>
<th>D₂</th>
<th>D₃</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stripe₀</td>
<td>B₀</td>
<td>Bₙ</td>
<td>B₂ₙ</td>
<td>B₃ₙ</td>
<td>P₀</td>
</tr>
<tr>
<td>Stripe₁</td>
<td>B₁</td>
<td>Bₙ₊₁</td>
<td>B₂ₙ₊₁</td>
<td>B₃ₙ₊₁</td>
<td>P₁</td>
</tr>
<tr>
<td>Stripe₂</td>
<td>B₂</td>
<td>Bₙ₊₂</td>
<td>B₂ₙ₊₂</td>
<td>B₃ₙ₊₂</td>
<td>P₂</td>
</tr>
<tr>
<td>Stripe₃</td>
<td>B₃</td>
<td>Bₙ₊₃</td>
<td>B₂ₙ₊₃</td>
<td>B₃ₙ₊₃</td>
<td>P₃</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Stripeₙ₋₁</td>
<td>Bₙ₋₁</td>
<td>B₂ₙ₋₁</td>
<td>B₃ₙ₋₁</td>
<td>B₄ₙ₋₁</td>
<td>Pₙ₋₁</td>
</tr>
</tbody>
</table>
Read and Write Operation in S-RAID

• Read operation is the same as RAID 4
 ➢ Reading from standby disk needs to wake up the disk

• In the case of sequential write operation:
 ➢ Use disk 1 first, then use disk 2, and so on…
 ➢ Only one data disk and one parity disk are active at a time
 ➢ All other data disks are in standby mode
 ➢ While writing to the data disk, the parity should be recomputed at the same time (not like N-RAID)

• In the case of random write operation:
 ➢ Other data disks may be woken up
Optimizations of S-RAID 4

• One write request needs 4 I/O operation:
 ➢ Read old data and old parity;
 ➢ Write new data and new parity;

• Optimizations
 ➢ Readahead (read old data and parity in large chunk)
 ➢ Aggregation (aggregate new data into large chunk before write to disk);
 ➢ Caching;

• Test results:
 ➢ Single disk Seq Read/Write: 110MB/s / 107MB/s.
 ➢ 16MB Cache, 1 disk S-RAID 4 Seq Write: 32MB/s.
 ➢ 1GB Cache, 1 disk S-RAID 4 Seq Write: 52MB/s.
Grouping S-RAID 4

• Performance limitation
 ➢ S-RAID4 has only one data disk work at one time

• Grouping Strategy
 ➢ Allow more than one disk (group) working at the same time
 ➢ use stripping in each group, write data blocks parallel
 ➢ The more disks there are in active mode, the higher the performance will be. But power consumption increases and disk lifetime decreases accordingly.
 ➢ When all disks are in active mode, the disk array is equivalent to a traditional RAID
 ➢ The size of group is fixed, thus it must be planned in advance
 ➢ Grouping can be used in both S-RAID 4 and S-RAID 5
S-RAID 4 Group Data Layout

• Group Data Layout of Semi-RAID 4
• The LBA of the array is mapped to blocks in such a way that the first half of the LBA space lies in G_0, and the second half of the LBA space lies in G_1.

• When the requests are clustered in group G_0, disks in group G_1 could be put into standby mode.

A group includes at least a whole data disk, therefore there is enough LBA space in one group for the sequential request to cluster in.
Advantages of S-RAID 4

• Reduce the power consumption
 ➢ Only part of the disks array are in active mode at the same time

• Enhance disk reliability
 ➢ Working hours of individual data disk is much shorter than the working hours of the disk array

• Protect data from disk failure
 ➢ S-RAID 4 data layout is like N-RAID data layout, but S-RAID provides data protection function of the traditional RAID
Limitation of S-RAID 4

- S-RAID 4 uses a fixed parity disk like the traditional RAID 4, hence the parity disk may also become a bottleneck.

- This not only affects the performance but also reduces reliability, because parity disk cannot be put into standby mode.

- To ease the bottleneck of parity disk, we introduce the S-RAID 5 data layout that uniformly distributes parity blocks among the disks.
4. Semi-RAID Data Layout

Data Layout of Semi-RAID 5

Stripes and Blocks

SD0 SD1 SD2 SD3 SD4

VGroup0 VGroup1 VGroup2 VGroup3 VGroup4
Performance of S-RAID 5

- Read Performance of S-RAID 5

![Graph showing Read Performance of S-RAID 5][1]

[1]: Image of a graph showing the read performance of S-RAID 5 with different request lengths and transfer rates.
Performance of S-RAID 5

- Write Performance of S-RAID 5
To evaluate the power saving effect of S-RAID in actual situation, we test the power consumption of a video surveillance system with 32 digital cameras.

We run the experiment for a time period of 1 hour and measure the power consumption of each disk in the S-RAID 5 every second.
Experiment Results:

The S-RAID 5 includes 5 Seagate ST3500418AS 500G 7200RPM Disks, and is divided into 2 groups of 2 disks. The number of vertical group is set to 5, the same as the number of the disks.
Conclusion

- S-RAID is an alternative RAID data layout optimized for sequential data access, S-RAID provides extra reliability and high energy efficiency.

- The trade-off is that, the performance drops in S-RAID especially for write request. So, S-RAID is only suitable for applications like video surveillance, CDP, VTL, etc.

- S-RAID addresses performance issue by adjusting the group size.
Conclusion

• Applicable scenarios: (Sequential data access)
 ➢ Video surveillance
 ➢ CDP (Continuous Data Protection)
 ➢ VTL (Virtual Tape Library)

• Inapplicable scenarios:
 ➢ Database (exhibits random data access pattern)
 ➢ Video-on-demand, File server, etc. (ask for high performance)
Further Work

- Set and manage dynamic group size in S-RAID, Therefore the same S-RAID can adapt to the variations of data transfer rate of the application.

- Design fine-grained schedule algorithm for disk spin-down and spin-up, instead of waiting for the idle disk for a constant length of time.

- Exploit log-structure file system to obtain sequential write workloads.
Thank you!