Flat XOR-based erasure codes in storage systems: Constructions, efficient recovery, and tradeoffs

Kevin M. Greenan
ParaScale

Xiaozhou Li
HP Labs

Jay J. Wylie
HP Labs

MSST Research Track
May 7, 2010
Contributions
Consider fraction of disk

Traditional replication & RAID codes (MDS codes) offer a specific tradeoff as stripe width (k) increases.
Consider fraction of disk that each available disk must read for recovery.
Other code constructions offer different tradeoffs!
Contributions

– **Efficient recovery of erasure-coded data**

– New erasure codes (flat XOR-codes)
 • MD Combination codes
 • Stepped Combination codes
 • Flattened parity-check array codes

– Recovery equations & schedules for XOR-codes

– Analytic comparison
 • Apples-to-apples analysis of many codes
 • For key properties of erasure-coded storage
Background
Replication

Two-fold replication
0 1

Three-fold replication
0 1 2

Four-fold replication
0 1 2 3

- Blue fragments are “data”
- Green fragments are “parity”
- For replication, “parity” and “data” are the same…
RAID

RAID4 0 1 2 3

RAID6 0 1 2 3 4

- Ignore rotation (e.g., RAID5)
- Ignore details of how “parity” is calculated
MDS (Maximally Distance Separable) codes

- Replication, RAID4, and RAID6 are all MDS
- MDS codes are optimally space-efficient
- I.e., each parity disk increases fault tolerance
- Notation: k data and m parity fragments
- An MDS code is m disk fault tolerant (DFT)
Recovery equations for MDS codes

\[k = 1, \ m = 2 \]

\[
\begin{array}{llll}
0 & 1 & 2 & 2 \\
0 & & & 2 \\
& & & \\
& & & \\
\end{array}
\]

\[k = 3, \ m = 2 \]

\[
\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & \\
0 & 2 & 3 & & & \\
0 & 2 & 3 & 4 & & \\
0 & & & 2 & 3 & 4 \\
\end{array}
\]

- Any \(k \) fragments can recover a failed fragment
- E.g., consider if fragment 1 fails
Recovery equations for MDS codes

3-fold replication

- Any k fragments can recover a failed fragment
- E.g., consider if fragment 1 fails
Recovery schedules for MDS codes

3-fold replication

RAID6

- Use multiple recovery equations simultaneously
- Reduces read recovery load on available disks
Recovery schedules for MDS codes

3-fold replication

If disk one fails, then each of disk zero and disk two only need to read half the stripes.

- Use multiple recovery equations simultaneously
- Reduces read recovery load on available disks
Recovery schedules for MDS codes

For this RAID6, each available disk must read $\frac{3}{4}$ of the stripes.

- Use multiple recovery equations simultaneously
- Reduces read recovery load on available disks
Flat XOR-codes
Flat code vs Array code

RAID6
0 1 2 3 4

Flat code

RDP
0 0 0 0 4
0 1 3 1 4
1 1 1 3 1
0 1 1 4

Parity check array code
Flat code vs Array code

RAID6

Flat code

RDP

Parity check array code

©2010 HP
Flat XOR-based erasure codes

Three-fold replication

- Each parity is XOR of a subset of data fragments
- Can be illustrated with a Tanner graph
- Replication and RAID4 are MDS flat XOR-codes
- Other flat XOR-code constructions not MDS
Chain codes

- Two- and three-disk fault tolerant constructions
- Example two-disk fault tolerant Chain code
 - Each parity XOR of two subsequent data fragments
 - Non-MDS: $k = m = 5$
Chain codes

- *Chain code* is variant of prior constructions
- Related constructions
 - Wilner/LSI codes [patent 6,327,627, 2001]
 - Weaver(n,2,2) codes [Hafner FAST, 2005]
 - SSPiRAL codes [Amer et al. SNAPI, 2007]
Minimum Distance (MD) Combination codes

- Lets construct a 2 DFT MD Combination code
 - Each data must connect to 2 parities
 - Every data must connect to distinct set of parities
- How large a code can we construct with 4 parities?
 - If $m = 4$, then there are 6 combinations of 2 parity
 - I.e., $k \leq \binom{4}{2} = 6$
Minimum Distance (MD) Combination codes

- More details in the paper
 - 2 & 3 DFT constructions
 - Bounds on k relative to m
 - Proof that constructions achieve desired DFT
Even more details in the paper...

– Stepped Combination code
 • Extension of MD Combination code
 • 2 & 3 DFT variants, bounds on k & m, proof

– Flattening
 • Converts parity-check array codes into flat XOR-codes
 • E.g., SPC, RDP, EVENODD, STAR

– Related work
 • Other non-MDS code constructions
 • Other recovery techniques
Efficient recovery
Efficient recovery example

- 2 DFT flat XOR-code
- $k=m=3$
- Chain and MD Combination codes equivalent
Recovery equation example

– Recovery equations for fragment zero?
– Some recovery equations less than \(k \) in size!
Chain code recovery schedule example 1

- Use all four recovery equations simultaneously
- Each available disk reads 0.5 disk’s data
- A total of 2.5 disk’s data is read to recover
Chain code recovery schedule example II

- Use two shortest recovery equations simultaneously
- Four of the five available disks read 0.5 disk’s data
- A total of 2.0 disk’s data is read to recover
Efficient recovery of flat XOR-codes

– Short recovery equations
 • Recovery equations smaller than \(k \)
 • Read less total data to recover than MDS

– Recovery schedules distribute read load
 • Each available disk reads less data to recover than MDS
More details in paper…

– Recovery equations algorithm for flat XOR-codes
– Algorithms to determine recovery schedules
– Discuss rotated codes (e.g., RAID5)
– Complements prior techniques
 • Parity declustering & chained declustering
 • Distributed sparing
Analytic comparison

– Focus on 3-DFT codes
– Analyze following codes
 • MDS
 • MD-Combination (MDComb)
 • Chain
– Consider stripes with k from 1 to 30
Relative storage overhead

- Storage overhead relative to one replica
- MDS codes: \(\frac{(k+m)}{k} \)
- Non-MDS have greater overhead than MDS codes
Fourfold replication = 4.0

Chain code = 2.0

MDComb code approach MDS

MDS code = \(\frac{k+3}{k}\)

Relative storage overhead

k
Average shortest recovery equation size

- Determine shortest recovery equation per fragment
- Average size over all fragments
Average shortest recovery equation size

MDS code = k

MDComb code Varies between

Chain code = 3
Average recovery read load

- Optimal recovery schedule per lost fragment
- Average over all fragments
MDS code = $\frac{k}{k+2}$

MDComb code

between

Chain code = $\frac{3}{2k-1}$

Average recovery read load

k
Fraction of 4-disk faults leading to loss

– Since flat XOR-codes are non-MDS
– They may tolerate specific sets of 4 disk failures!
– (Or, even more than 4 disk failures.)
MDS code = data loss

Inversely related to storage overhead

Fraction of 4-disk faults leading to loss

Log scale!
Analytic comparison at $k=15$

<table>
<thead>
<tr>
<th></th>
<th>Storage overhead</th>
<th>Avg. short rec. eq. size</th>
<th>Avg. read rec. load</th>
<th>4-disk fault data loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS</td>
<td>1.2</td>
<td>15.0</td>
<td>0.88</td>
<td>100.0%</td>
</tr>
<tr>
<td>MDComb</td>
<td>1.4</td>
<td>6.5</td>
<td>0.32</td>
<td>3.5%</td>
</tr>
<tr>
<td>Chain</td>
<td>2.0</td>
<td>3.0</td>
<td>0.10</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

As storage overhead increases, other metrics improve.
More analysis in the paper

- More codes
 - 2DFT codes
 - Stepped-Combination
 - Flattened parity-check array codes

- More metrics
 - Discussion of encode/decode performance
 - Analyze small write costs
Summary

- Novel flat XOR-code constructions
 - MD-Combination codes
 - Stepped Combination codes
- Efficient recovery
 - Recovery equations
 - Recovery schedules
- Analytic comparison
 - Storage overhead, small writes, read recovery load, fault tolerance
- Believe Chain & Comb codes delimit XOR-code tradeoff space