The Blue Water’s File/Archive System

Data Management Challenges
Michelle Butler
mbutler@ncsa.illinois.edu
NCSA is a...

- World leader in deploying supercomputers and providing scientists with the software and expertise needed to fuel discoveries in science and engineering
- Unique partnership among the University of Illinois, state of Illinois, and federal government
- Home to more than 250 computing experts and students
- Key partner in the National Science Foundation’s TeraGrid project
- Home to Blue Waters, expected to be the most powerful computer for open scientific research when it comes online in 2011
NCSA’s current computing power

• 4 production systems
• More than 155 teraflops (155 TRILLION calculations every second)
• About 1,500 users nationwide
• Researchers receive time at no cost through peer review
• Archive environment at 6PB and growing at 75%/year
Let’s get Blue Waters specific!
Diverse Large Scale Computational Science

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoscience</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Fusion</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Climate</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Combustion</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Astrophysics</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>System Balance Implications</td>
<td>General Purpose balanced System</td>
<td>High Speed CPU, High Flop/s rate</td>
<td>High Performance Memory</td>
<td>High Interconnect Bisection bandwidth</td>
<td>High Performance Memory</td>
<td>High Speed CPU, High Flop/s rate</td>
<td>Irregular Data and Control Flow</td>
<td></td>
</tr>
</tbody>
</table>

Use, reproduction, or disclosure is subject to the restrictions as stated in the "IBM Agreement for Exchange of Confidential Information – Blue Waters" as documented in the "IBM Statement of Work for Blue Waters System Prepared for the National Center for Supercomputing Applications (NCSA)"
Blue Waters Petascale Computing System

Blue Waters Computing System

<table>
<thead>
<tr>
<th>System Attribute</th>
<th>Typical Cluster (NCSA Abe)</th>
<th>Track 2 (TACC)</th>
<th>Blue Waters*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor</td>
<td>Dell</td>
<td>Sun</td>
<td>IBM</td>
</tr>
<tr>
<td>Processor</td>
<td>Intel Xeon 5300</td>
<td>AMD</td>
<td>Power 7</td>
</tr>
<tr>
<td>Peak Perf. (PF)</td>
<td>0.090</td>
<td>0.58</td>
<td>~10</td>
</tr>
<tr>
<td>Sustained Perf. (PF)</td>
<td>~0.005</td>
<td>~0.06</td>
<td>~1.0</td>
</tr>
<tr>
<td>Number of cores</td>
<td>9,600</td>
<td>62,976</td>
<td>>300,000</td>
</tr>
<tr>
<td>Amount of Memory (PB)</td>
<td>0.0144</td>
<td>0.12</td>
<td>>1.0</td>
</tr>
<tr>
<td>Amount of Disk Storage (PB)</td>
<td>0.1</td>
<td>1.73</td>
<td>>18</td>
</tr>
<tr>
<td>File system Performance (GB/s)</td>
<td>11</td>
<td>30</td>
<td>>1500</td>
</tr>
<tr>
<td>Amount of Archival Storage (PB)</td>
<td>11</td>
<td>30</td>
<td>~500</td>
</tr>
<tr>
<td>External Bandwidth (Gbps)</td>
<td>40</td>
<td>10</td>
<td>100-400</td>
</tr>
</tbody>
</table>

*Reference petascale computing system (no accelerators).
Storage Management – BW Approach

Have the right data at the right place at the right time

- Blue Waters will proactively use the new storage functions to implement a new state of the practice in HPC storage management (hours to fill diskcache, day to write to tape)
- Goal – no pain (for users anyway 😊)
 - To have one extremely large storage space – with on-line and near-line limits
 - Approach storage as with virtual memory
 - Large virtual storage
 - Limited work sets of data
 - Try to keep the data with the most temporal locality in the highest (fasted) levels of storage when it is needed
- Goal vs reality needs to be explored
- Fall back is to implement a more standard
Possible Layout

<table>
<thead>
<tr>
<th>Usage</th>
<th>File System</th>
<th>On-line Usable Capacity</th>
<th>Near-Line Capacity</th>
<th>Managed</th>
<th>Quota</th>
<th>Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Home Directories</td>
<td>Midperf</td>
<td>4PB</td>
<td>20 PB?</td>
<td>Yes</td>
<td></td>
<td>Yes - via GHI – relatively rapid backup (> 24 hours? residency) All files > 1MB Metadata backed up weekly</td>
</tr>
<tr>
<td>High Performance Large Files</td>
<td>Highperf</td>
<td>14 PB</td>
<td>480PB?</td>
<td>Yes</td>
<td></td>
<td>Yes – via GHI Longer (> 7 day residency?) Metadata backed up before upgrades. Alternative is to subdivide with and without GHI</td>
</tr>
<tr>
<td>Large Scale Test</td>
<td>Test</td>
<td>.2PB</td>
<td>4</td>
<td>No</td>
<td>No</td>
<td>For new system testing</td>
</tr>
</tbody>
</table>

- Midperf: Midperformance
- Highperf: High performance
- Test: Test
- PB: Petabyte
- GHI: Grid High-Performance Internet
On going research

• Batch jobs –
 • users tell us ahead of time
 • what objects need to be online before job can be started
 • how much storage space is needed for the job
 • NCSA behind the scenes will move up the data from near-line(on-demand stage) or from across country (gridftp)
 • Using attributes in GPFS to “lock” files on disk so that they don’t get “punched or purged” before all the data is on-line.
On going research -

- What files need to stay on disk for further analysis? (post analysis)
 - what can go to archive immediately (safe keeping),
 - what can be deleted? Checkpoints?
- Post job data management step
On going research -

• For retrieval: how will the files need to be associated together
 • Using GPFS filesets for the PRAC projects
 • Researching the filesets environments
 • so policy scans can be run in parallel over filesets
 • quotas implemented at fileset level
 • use HPSS family of files for project from GPFS filesets
National Petascale Computing Facility at a Glance

- 88,000 GSF over two stories—45’ tall
 - 30,000+ GSF of raised floor
 - 20,000+ unobstructed net for computers
 - 6’ clearance of raised floor
- 24 MW initial power feeds + backup
 - Three 8 MW feeds + One 8 MW for backup
 - 13,800 volt power to the each
- 5,400 Tons of cooling
 - Full water side economization for 50%+ of the year
 - Automatic Mixing of mechanical and ambient chilled water for optimal efficiency
 - Adjacent to (new) 6.5M gallon thermal storage tank
- 480 Volt distribution to computers
- Energy Efficiency
 - PUE - ~1.02 to <1.2 (projected)
 - USGBC LEED Silver-Gold (Platinum?) classification target

www.ncsa.illinois.edu/BlueWaters
Questions? See me

Michelle Butler
NCSA/University of Illinois
Technical Program Manager
mbutler@ncsa.illinois.edu- http://www.ncsa.uiuc.edu/BlueWaters