
Parallel Reed/Solomon Coding on Multicore Processors

Peter Sobe
Institute of Computer Engineering

University of Luebeck
Luebeck, Germany

Email: sobe@iti.uni-luebeck.de

Abstract—Cauchy Reed/Solomon is an XOR-based erasure-
tolerant coding scheme, applied for reliable distributed storage,
fault-tolerant memory and reconstruction of content from
widely distributed data. The encoding and decoding is based
on XOR operations and already well supported by micropro-
cessors. On multicore processors, the coding procedures should
also exploit parallelism to speed up coding.
In this paper we derive coding procedures from code pa-
rameters (e.g. the number of tolerated failures) and propose
their transformation into parallel coding schedules that are
mapped on multicore processors. We (i) compare functionally
decomposed coding procedures with data-parallel coding of
different blocks, and (ii) specify the method to derive these
schedules.

Keywords-Parallel Storage; Dependable Storage; Erasure-
tolerant Coding

I. INTRODUCTION

Erasure-tolerant coding is mainly applied for storage systems
that spread data across several devices and tolerate device
failures. Coding is applied in combination with a distribution
of data elements across different devices, which provides
the independence of failures and is the basis of the failure
correction capability. When storage resources - mostly disks,
but also solid-state based devices and memory - fail, the
lost data elements are calculated using the remaining data
elements and the redundant elements. The application field
of such erasure-tolerant codes is wide and ranges from
disk controllers to software-based distributed systems. For
instance, enterprise server systems use specialized storage
elements that implement erasure-tolerant coding on disk
controllers using microprocessors or specific ASICs to do
that task. Most of these systems are rather static, i.e. all
the data is handled equally. In addition, relatively simple
codes are applied, e.g. replication or pure parity codes with
a single parity. It is hard to provide appropriate levels of
failure tolerance for different classes of data with different
importance and lifetime within a single storage system.
A software-based coding that relies on standard multicore
processors tends to be more flexible. For example, a system
can apply different strength of failure tolerance, depending
on which filesystem directories are accessed an how critical
the stored data is. Until the present days, microprocessors
were not powerful enough to run application, operating
system and do software-based coding together. This changed

with multicore processors and continues in the manycore era.
Particularly inhomogeneous manycore processors with a few
complex cores and many of small and simple cores will be
powerful enough to do data en- and decoding.
The contribution of the paper is an analysis of different
parallelization approaches for Cauchy-Reed/Solomon codes.
These codes are described by equations which are trans-
formed into an iterative schedule and mapped onto a set of
CPU cores.
Beyond, coding by interpretation of equations allows to
structure a system into several components. Some com-
ponents are dedicated to deliver the equations, and other
components solely interprete equations. With respect to
multicore and manycore systems, many cores can be used
to interprete different equations and process data elements
according to them - without relying on code-specific strate-
gies.
The paper is organized as follows. Related areas - erasure
tolerant coding, parallel storage and parallel code compu-
tations - are shortly revisited in Section II. In Section III
we explain the principles of Cauchy-Reed/Solomon erasure-
tolerant codes and their description by equations. Parallel
coding is described in Section IV. We conclude with a
summary.

II. ERASURE-TOLERANT CODING

Erasure-tolerant codes are a special case of error correcting
codes. Error correcting codes detect and correct a certain
number of erroneous elements in a code word. When it is
known, which elements are erroneous, an erasure-tolerant
code can be applied. The error is treated as an erasure of data
and the erased content is recalculated by the decoding pro-
cedure. Compared to error correcting codes, erasure-tolerant
codes are a better choice in terms of storage overhead and
calculation cost.
The correction capability relies on a limitation of the number
of erroneous elements. Thus, data has to be spread across
different data storage resources that do not fail simultane-
ously. In that way, k storage resources are used for original
data elements. Redundancy is added and placed onto m
additional storage resources.

2010 International Workshop on Storage Network Architecture and Parallel I/Os

978-0-7695-4025-2/10 $26.00 © 2010 IEEE

DOI 10.1109/SNAPI.2010.16

71

A. State of the Art

For a low storage overhead, MDS (maximum distance sep-
arable) codes are preferred which are optimal with respect
to their number of tolerable faults with a certain number of
additional storage units. By MDS codes up to m failures
can be tolerated among n = k + m resources. The most
flexible MDS codes are Reed/Solomon [16] codes that
can be applied to any number of data and redundancy
storage resources. A Reed/Solomon (R/S) implementation
for disk arrays is described by Plank et al. [12], [14] using
Galois field (GF) arithmetics. Cauchy-Reed/Solomon codes
[2] allow to use XOR operations for en- and decoding.
Cauchy-R/S combines the usage of a Cauchy matrix with
an interpretation of data elements and matrix factors as Bit-
vectors and Bit-matrices respectively. A proper partitioning
of the input data in units, combined with the distribution
onto several resources allows the use of bit-parallel XOR
operations with the width of typically 64 or 128 bit. Cauchy-
Reed/Solomon codes are widely applied, e.g. in the archival
layer of the global storage system Oceanstore [11] and also
in UpStore [8] with an extension for cryptography. These
codes allow a relatively high encoding and decoding perfor-
mance, but are still not optimal im terms of coding cost.
Only a few particularly designed codes, e.g. EVENODD
[1], the similar Double parity code and the Star code [7],
show both low computation cost for encoding and the least
possible storage overhead (the MDS property). The original
en- and decoding algorithms for these codes are known
as near-optimal. These codes work solely for a particular
number of additional storage resources (m ∈ {2, 3}) and a
restricted choice of k - and are not considered in this paper.
A wide variety of XOR-based codes are implemented in the
software-based distributed storage system NetRAID [17],
[19]. In that system we implemented the equation-based
description of encoding and decoding in order to allow
a flexible use of different codes. Besides working with
hardware accelerators [18], we currently are porting the
system to multicore processors. Another direction towards
generalized solutions is matrix-based encoding and decod-
ing. An example is the jerasure[13] library that implements
general matrix-based codes with optimizations for en- and
decoding performance. The code can be flexibly parameter-
ized by specifying a bit-level generator matrix. The decoding
algorithm is calculated using the generator matrix for each
failure case inside the library. This approach can be directly
translated to the equations which are used in this paper.

B. Coding Algorithms

Throughout the paper we use the term code to specify
the set of code words and the function to calculate code
words from the original data words. Encoding is applied to
calculate code words from the original data words. Decoding
is the algorithm to recalculate the original data words from
code words that are incomplete due to failures. Encoding

and decoding can both be described by XOR equations, as
shown in [20]. This requires a (1) data element placement
on the storage resources and (2) to reference data elements
properly in the XOR equations. The code type, execution
time and resource requirements of coding procedures depend
on these equations. For instance, encoding can be optimized
to consume the least number of XOR operations on a
single processor core, i.e. to consume as little computational
resources as possible. In contrast, a fast encoder may run on
several cores and does not rely on the least XOR operation
count necessarily. We call this coding style - the way like
the code calculations are structured. In the iterative coding
style, the required elements are calculated serially, using
previously calculated elements when possible. In contrast,
the direct coding style allows to calculate each required
element independently from other elements. Direct coding
naively supports parallel coding, but contains redundant
calculations. In contrast, a fully iterative coding algorithm
eliminates all redundancy, but introduces data dependencies
and communication.

C. Parallel Storage and Parallel Coding

Single storage devices are relatively slow, with a transfer
rate of a few 100 MByte/s. This has to be compared to the
memory bandwidth in the range of tens of GByte/s. Higher
performance of storage systems mainly raises from parallel
operation of several storage devices. Parallel storage devices
first have been introduced with RAID systems [9] in the
context of several attached disks and later adopted to net-
worked storage in many different implementation variants,
e.g. the Parallel virtual File system [4]. Even though devices
are arranged to work in parallel, the accessing instances
often operate in a sequential fashion. An exception are
hardware-based accelerators that contain parallel structures.
The software functions for erasure-tolerant en- and decoding
are often still sequential procedures. Most research has been
directed to find efficient codes with a low number of XOR
operations and reasonable high failure-tolerance. Therefore,
an obvious task is to exploit parallelism for accessing
distributed data and for parallel coding on multicore proces-
sors. A recently developed driver [10] already implements
Reed/Solomon coding on multicore systems according to
the block level parallelism which is also described in this
paper. Another recent field of research is on using graphic
processing units (GPU) for error-tolerant coding. In [5] a
GPU was evaluated for encoding a k=3, m=3 Reed/Solomon
code. It could be shown that the GPU’s encoding rate is
higher than the RAID level 0 aggregated write rate to the
disks and coding keeps track with the pure disk system
performance. In [3] a Linux block device is combined with
a GPU for Reed/Solomon coding and provides considerable
coding speedup related to a CPU-based implementation.
The coding principles in this paper have been implemented
within a Linux block device driver [6], yet operating sequen-

72

tially. This device driver is currently extended for parallel
coding, based on equation-oriented parallel coding.

III. CAUCHY REED/SOLOMON

The original Reed/Solomon code and the XOR-based variant
Cauchy-Reed/Solomon are flexible codes. that can handle
any number of data storage resources (k) together with
any number of redundant resources (m). At every resource,
ω different units are required to express the code with
equations (2ω > n + m).
The encoding equations are formed by interpreting the
relation between data units and redundant units as a linear
equations system. When the equation system is properly
constructed, it can be used directly to decode erased data
units, but also to provide equations to recalculate the erased
units. This complies with the common way to formulate a
code by a code generator matrix G. To obtain a code word
a, the original data word a∗ is multiplied (left sided) with
G.

a = G · a∗

Fig. 1 shows a k=5, m=2 code which is the example used
to demonstrate en- and decoding. The generator matrix
G =

{
I
C

}
consists of a 5 × 5 identity matrix I and

C =

{
2 7 4 3 1
3 4 7 2 5

}
. For the example C is specifically

selected and has to be a Cauchy matrix for a Cauchy-
Reed/Solomon code. The arithmetics used correspond to a
Galois field GF(23) using the modular polynomial M(x) =
x3 + x + 1. To apply this code with bit level arithmetics
(logical AND and XOR), each element must be arranged as
a block of 3 bits according to Tab. I. For instance, resource
r1 is split into three units (3, 4 and 5) that are individual
elements for the coding algorithm. In practice, a resource
stores data in three separated parts, e.g. three partitions on
a disk.
Correspondingly, every factor in C is mapped to a 3× 3 bit
matrix, according to a rule described in [2]. For the depicted
example, encoding is completely covered by 6 equations that
require a total number of 45 XOR operations. The required
number of XOR operations depends from the modular
polynomial and the generator matrix. By constructing proper
generator matrices that contain a low number of 1-bits, but
still provide a set of linearly independent equations, the
computational cost of Cauchy-R/S is two to three times
above the theoretical optimal cost[15].

data parities
resource r0 r1 r2 r3 r4 r5 r6

units 0 3 6 9 12 15 18
1 4 7 10 13 16 19
2 5 8 11 14 17 20

Table I
UNIT ASSIGNMENT FOR A (5,2) CAUCHY R/S CODE

0 1

11
1
0 0

0
0 1

1
0
0

1
1
0

1
0
1

0 1
1
11

1
0

0
0

0
1
0

1
1
0

0 1

11
1
0

0

0
10

1

1
1

1
1

1
1

0 0
0

00
0

00

0
00

1
0
0

1
1
0

1
1

0

1
1

1

0
0
0
1

XOR
XOR
XOR

1
1
0

0
1

1
1
0

1
0
1

1
1
1

1
1

0
0

0
0

5 resources
with 3 units

resource

r 0

r

r

r

r

1

2

3

4

r 5

6r

a*
unit

9

11
10

12

14
13

3

5
4

6

8
7

15

17
16

18

20
19

resource unit

2 resources with 3 units

C

0

2
1

generator matrix (part)

1 1
111
11

0

0 1
0
0

1
1
0

1
1

0

0 1

11
1
0

0

0
10

1 1
111
11

0

0
1 1 1
1
1 1 0

00

1 1 1
1
1 1 0

00

a

Figure 1. Cauchy Reed/Solomon Encoding

The following equations result from C and express a direct
encoding style. It this style, each redundant unit is calculated
independently from other redundant units. As input, solely
units are used that represent original data content.
In order to express equations in a compact notation, we
combine units to be xor-ed in an argument list for a XOR
operator, i.e. XOR(3,5,8) is the expression for unit3 ⊕ unit5
⊕ unit8. The equations refer the units by their number, i.e.
the number 1 within the XOR arguments should be read as
unit 1. The XOR operation is applied on the data onto the
referred units.

(1) 15 = XOR(2,3,4,5,7,9,11,12)
(2) 16 = XOR(0,2,3,7,8,9,10,11,13)
(3) 17 = XOR(1,3,4,6,8,10,11,14)
(4) 18 = XOR(0,2,4,6,7,8,11,12,13)
(5) 19 = XOR(0,1,2,4,5,6,9,11,14)
(6) 20 = XOR(1,2,3,5,6,7,10,12)

Every Cauchy-R/S code contains ω × m redundant units
which each are calculated using an equation. In that way,
the encoding calculations can be mapped to ω×m processor
cores, 6 cores for the example code.
During encoding a couple of XOR operations are exe-
cuted redundantly, for instance XOR(4,9,11) is contained
in equations (1) and (5). This is the motivation for another
coding style, the so-called iterative style. By the iterative
coding style, redundant elements are calculated using other
redundant elements and temporary elements. This eliminates
redundant calculations and reduces the total number of
operations, which often leads to a faster parallel coding,
compared to the direct coding style. The iterative encoding

73

equations for the example code are derived as follows, using
the symbols A . . . H for temporary elements.

(1) 15 = XOR(B,C,D) (7) A = XOR(2,3)
(2) 16 = XOR(D,E,F) (8) B = XOR(4,5)
(3) 17 = XOR(3,4,8,E,H) (9) C = XOR(11,12)
(4) 18 = XOR(2,4,6,7,C,F) (10) D = XOR(7,9,A)
(5) 19 = XOR(0,2,9,11,B,H) (11) E = XOR(10,11)
(6) 20 = XOR(5,7,10,12,A,G) (12) F = XOR(0,8,13)

(13) G = XOR(1,6)
(14) H = XOR(14,G)

This iterative encoding needs 33 XOR operations in total.
Iterative equations can be automatically generated from
the direct equations by identifying common subexpressions.
Because of the lower number of XOR operations, sequential
en- and decoders benefit from the iterative coding strategy.
A possible order of equation interpretation is depicted in
Fig. 2. Parallel coding also profits from iterative equations
in terms of less XOR operations in total, but data transfer
cost is introduced.

2

3

A

4

5

B C

12

11 7

9

A

D

E

11

10 1

6

G

0

8

13

F

G

H

14

D

C

B

15 16

D

E

F

H

E

8

6

3

17

7

6

4

2

18

C

F

11

9

2

0

19

B

H

12

10

7

5

20

A

G

Figure 2. One possible sequential execution path through iterative encoding
equations

Decoding equations are derived from the inverse of a sub
matrix of

{
I
C

}
, without rows that correspond to failed

devices. While this is done within the Galois field inter-
pretation, the inverse matrix is subsequently transformed
to a bit-level matrix and then provides the equations for
decoding. In that way, decoding is also an interpretation
of XOR equations that can either follow the direct or the
iterative style after a eliminating redundant computations.
This allows to include solely a XOR equation interpreter
into the storage system that is responsible for the en- and
decoding of data. This part possibly operates for long time
on a huge amount of data that is written to and read from
the storage system. It has to be optimized for performance
and therefore should exploit parallelism.
The equation generator is another component which does
the matrix-based calculations and prepares the equations.
The system structure which results from this separation of
equation generation and equation-based coding is depicted
in Fig. 3.

IV. PARALLEL CODING

With the presence of multicore and manycore systems,
a parallel execution of the coding functions is strongly

encoder decoder

decoding
equationsequations

encoding

storage system

failure
description

written
data data

read

generator
equation

Figure 3. Separated equation generation and coding

motivated. It should be considered for performance reasons,
but also to mitigate the lower clock frequency and stagnating
performance of a single core. The speedup of the coding
functions is mainly determined by a balanced separation of
the computational workload across the cores. A division of
workload should also divide the access to input and output
data into smaller independent parts, because the performance
is also limited by data access (access to storage resources,
memory access and cache effects).
Parallel coding can be organized either by

• block level parallelism - calculating parts of redundant
data independently from corresponding blocks of the
input data, or

• by equation-oriented coding - assigning whole equa-
tions to different cores.

How good the workload can be balanced and how the
references can be held locally an small data regions is
studied in the following for several variants of parallel
coding. For explanation the example with k=5, m=2 from
Section III will be used.

A. Block Level Parallelism

This variant operates on several tiles of input data in a
data-parallel fashion. Corresponding data blocks from data
storage resources are collected and coded sequentially, as
shown in Fig. 4. The iterative coding style should be
preferred, due to less XOR operations for coding.
Conceptually, block parallel coding ideally exploits paral-
lelism of the coding procedure. When p cores are used,
each core covers 1/p-th of the computational workload
and accesses 1/p-th of the input and output data amount.
The size of the tiles can be scaled between a few bytes
to very large blocks, depending on the access granularity.
Nevertheless, these tiles always include all units of a stripe
and accesses are always directed to all storage resources
and to all partitions on a resource. Another observation is
the average number of references to a specific unit when
all iterative equations are calculated: surprisingly every unit

74

is accessed almost two times (exactly two times in the
example).

2

3

A

4

5

B C

12

11 7

9

A

D

E

11

10 1

6

G

0

8

13

F

G

H

14

D

C

B

15 16

D

E

F

H

E

8

6

3

17

7

6

4

2

18

C

F

12

10

7

5

20

A

G

2

3

A

4

5

B C

12

11 7

9

A

D

E

11

10 1

6

G

0

8

13

F

D

C

B

15 16

D

E

F

11

9

2

0

19

B

H

12

10

7

5

20

A

G

G

H

14

2

3

A

4

5

B C

12

11 7

9

A

D

E

11

10 1

6

G

0

8

13

F

G

H

14

D

C

B

15 16

D

E

F

H

E

8

6

3

17

7

6

4

2

18

C

F

11

9

2

0

19

B

H

12

10

7

5

20

A

G

8

6

3

6

4

2

11

9

2

0

19

B

H

computation

computation
on core 6

tile 6tile 1

tile 6tile 1
on core 1

original data
storage resources

redundancy
storage resources

Figure 4. Block level parallelism

B. Equation-Oriented Parallelism

Alternative variants of parallel coding assign equations to
individual cores, instead of dividing the data into blocks.
For instance, the direct encoding equations from section III
can be calculated on six cores independently. For iterative
coding, every core is responsible for a number of related
equations, as illustrated in Fig. 5. Exemplarily, lines connect
cores with the accessed input data units and accessed non-
local temporary units. A more detailed view on a possible
schedule of equations on six cores is given in Fig. 6.

on core 1

equations (7),(10),(1)

on core 2

on core 3

on core 4

on core 5

on core 6

equations (8),(12),(2)

equations (9),(4)

equation (6)

equations (11),(5)

storage resources

equations (13),(14),(3)

redundancy

original data
storage resources

Figure 5. Equation-oriented parallelism

An equation-oriented coding causes a different access local-
ity to the units compared to a block parallel coding. In Tab.

2

3

A

7

6

4

2

18

C

F

E

11

10

C

12

11

12

10

7

5

A

G

core 1 core 2 core 3 core 4 core 5 core 6

7

9

A

4

5

B

D

D

C

B

0

8

13

F

1615

D

E

F

G

H

1

6

G

14

11

9

2

0

19

B

H

20

H

E

8

4

3

17

Figure 6. A possible schedule of iterative equations on six cores

locality measure symbol block-level equation-oriented
direct iterative

accessed data a 1
p

> 1
p

> 1
p

(input and output)
number accessed rinp k k‘ k“
resources (input) k‘ ≤ k k“ ≤ k′
number accessed rout m 1 1
resources (output)
average number of

accessed units u all ω < ω < ω
per resource1

average multiplicity m > 1 1 > 1
of accesses2 higher 1 less

average number of
accessed distant d 0 0 > 1
temporary units

Table II
LOCALITY MEASURES DERIVED PER CORE

II measures for several aspects of locality are defined with
their relation to code parameters.

A quantitative comparison of the equation-oriented coding
variants to block parallel coding can be found in Tab.
III and IV, specifically for the example code (Cauchy-
Reed/Solomon, k=5, m=2). For comparison, the measures
for block parallel coding are a = 0.16, rinp = 5, rout = 2,
u = 3, m = 2, d = 0. For both variants of equation-oriented
parallelism, the cores access a bigger share of the input
data (a) compared to block level parallelism, but in turn the
degree of multiple usage of a unit is reduced (m). Among
the variants of equation-based coding, iterative coding takes
fewer units for input (u) and concentrates accesses on fewer
ressources (rinp).

75

equation-oriented direct coding
core relation

1 2 3 4 5 6 average to block
level par.

a 0.53 0.6 0.53 0.6 0.6 0.53 0.56 × 3.4
rinp 5 5 5 5 5 5 5 equal
rout 1 1 1 1 1 1 1 × 0.5
u 1.6 1.8 1.6 1.8 1.8 1.6 1.7 × 0.56
m 1 1 × 0.5
d 0 0 equal

Table III
PROPERTIES OF EQUATION-ORIENTED DIRECT CODING (k=5,m=2)

equation-oriented iterative coding
core relation

1 2 3 4 5 6 average to block
level par.

a 0.26 0.3 0.4 0.4 0.4 0.26 0.34 × 2.06

rinp 4 4 4 4 3 4 3.83 × 0.76
rout 1 1 1 1 1 1 1 × 0.5
u 0.8 1 1.2 1.2 1 0.8 1 × 0.3

m 1 1 1 1 1.2 1 1.03 × 0.52

d 2 2 1 1 2 2 1.6 + 1.6

Table IV
PROPERTIES OF EQUATION-ORIENTED ITERATIVE CODING (k=5,m=2)

In the following, we propose a method to derive the parallel
execution schedules from the equation set. It is used to
prepare encoding schedules and decoding schedules as well.

C. Schedules Derived from Direct Equation Sets

Using direct equations, each equation can be assigned to
a single core and all XOR operations of an equation are
performed sequentially on a core. We call this equation-to-
core mapping. The number of equations for encoding is m×
ω and is six for the example with m=2 and ω=3.
We illustrate a schedule by a number of horizontal time lines,
a row for every core in the scheme which will be used for
preparing the schedule.
Severals time lines in a vertical arrangement express multiple
cores as shown in Fig. 7. For illustration, XOR operations
are projected to time steps along a horizontal axis. The first
XOR operation of an equation is assigned to the earliest step
which is left-sided, the following operations to the time steps
in right direction. The length of a schedule is determined by
the longest equation.
The order how units are referenced in the slots is primarily
not restricted, but certainly will be an issue for reference
locality and cache behavior.

1Only the accessed ressources referenced units are included in the count
of unit references.

2Only referenced units are included in the multiplicity average.

cores steps
1 2 3 4 5 6 7 8

1 2 ⊕ 3 ⊕ 4 ⊕ 5 ⊕ 7 ⊕ 9 ⊕ 11 ⊕ 12
2 0 ⊕ 2 ⊕ 3 ⊕ 7 ⊕ 8 ⊕ 9 ⊕ 10 ⊕ 11 ⊕ 13
3 1 ⊕ 3 ⊕ 4 ⊕ 6 ⊕ 8 ⊕ 10 ⊕ 11 ⊕ 14
4 0 ⊕ 2 ⊕ 4 ⊕ 6 ⊕ 7 ⊕ 8 ⊕ 11 ⊕ 12 ⊕ 13
5 0 ⊕ 1 ⊕ 2 ⊕ 4 ⊕ 5 ⊕ 6 ⊕ 9 ⊕ 11 ⊕ 14
6 1 ⊕ 2 ⊕ 3 ⊕ 5 ⊕ 6 ⊕ 7 ⊕ 10 ⊕ 12

Figure 7. Schedule for direct encoding

The locality of references to input and output units can be a
reason for a faster multicore coding algorithm, as quantified
in Tab. III.
The example also points out a possible problem of equation-
based schedules - uneven utilization of cores. Cores 1, 3 and
6 perform one XOR operation less than cores 2, 4 and 5.
This effect is present in spite of an optimal schedule, because
45 XOR operations on 6 cores lead to 7 XOR operations
per core and three additional XOR operations. Solutions
for this problem are the following. An even utilization can
be reached by the selection of proper modular polynomials
and Cauchy matrices, i.e. such ones that produce equations
with equal computational effort (see IV-E). A necessary
condition is that the number of XOR operations can be
evenly divided by the number of cores. Another solution
is to compensate the different computational effort on the
cores by regularly changing the cores/equation assignment
after coding a number of stripes.

D. Iterative Equations Sets

The mapping of an iterative equation set is directed to m×ω
different cores. For description, equations are divided in
two classes: terminal and temporary equations. Terminal
equations are those that produce a redundant unit as result.
Temporary equations calculate temporary units, needed for
two or more equations. The mapping to cores is a stepwise
stacking of equations into the time lines on the cores. For
preparation of the schedules a scheme is used that contains
the core’s time lines in the upper part. The bottom part
of the scheme is used to list reference times to temporary
units and the step when a unit becomes available. During
schedule preparation, reference times may change, when
earlier temporary equations are included and new references
are added. The output of the schedule preparation is the
upper part of the scheme which can be directly interpreted
by the encoder and decoder procedures at the cores.
The preparation consist of the following phases: (1) equation
preparation, (2) terminal equation mapping, (3) a check for
unresolved temporary units, (4) temporary equation mapping
and (3) a check of the schedule whether all temporary
units are available prior references to them. Steps (4) and
(3) are repeated until all required temporary equations are
mapped. Finally equations are (5) backfilled in the scheme.
The phases are described in detail in the following.

76

Equation preparation: Temporary unit references are
placed on the rightmost positions in all equations.

Terminal Equation Mapping: Every terminal equation is
assigned to a distinct core, similarly to equation–to–core
mapping. During the preparation phase, shorter equations are
shifted in right direction the end together with the longest
equation. The intermediate schedule after the terminal equa-
tion mapping step is shown in Fig. 8.

cores steps
1 2 3 4 5

1 B ⊕ C ⊕ D
2 F ⊕ E ⊕ D
3 3 ⊕ 4 ⊕ 8 ⊕ E ⊕ H
4 2 ⊕ 4 ⊕ 6 ⊕ 7 ⊕ C ⊕ F
5 0 ⊕ 2 ⊕ 9 ⊕ 11 ⊕ B ⊕ H
6 7 ⊕ 5 ⊕ 10 ⊕ 12 ⊕ A ⊕ G

temporary units required
B,A, D,H,
F,C, G

E

temporary units available

Figure 8. Schedule for iterative encoding after mapping of terminal
equations

Check: For the required temporary units it is checked, if and
in which time step these units are available. If a required
unit is not yet calculated by a temporary equation, the
corresponding temporary equation is mapped. If a temporary
unit gets available at a later time than referenced, one of the
constraints used for mapping is violated and the equation is
mapped on earlier time steps.
Temporary equation mapping: All other equations used for
calculation of temporary units are stacked left-sided to the
terminal equations. For selection of temporary equations, a
couple of choices and constraints apply:

• choice A: long temporary equations should be mapped
first and mapped to the cores that offer the most unused
time steps.

• choice B: Temporary equations which refer to other
temporary units should be mapped earlier. The result
is a placement at later timesteps in the schedule.

• constraint A: When the latest time step of an in-
serted equation is tinsert(ut) and the temporary unit
ut is calculated, then ut may not be referenced before
tinsert(ut) + 1. If this constraint is violated, the tem-
porary equation has to be scheduled for an earlier time
period. This is managed either by selecting another core
for mapping, or by choosing another equation for the
next mapping step.

• constraint B: Data dependency - A reference to a
temporary unit utmp requires that this unit has been
already calculated by an equation in an earlier time
step. If this is not the case, this is detected during

insertion, by existence of the temporary equation for
utmp that ends on a later time step. A way to cope
with the detected problem is to mark the dependency
and undo all mappings until to the mapping of equation
for utmp. Then the mapping is redone considering the
dependency by mapping the referencing equation first.

Mapping and checking steps are repeated for all remaining
temporary equations until all equations are mapped. In
the example, the first temporary equation is equation 10
(D=XOR(7,9,A)) that is mapped to core 1. This equation is
selected first, because it is one of the longest equation and
contains another temporary element. The second equation
selected for mapping is (12) (F=XOR(0,8,13)), because of
its length. The intermediate schedule is shown in Figure 9.

cores steps
1 2 3 4 5

1 B ⊕ C ⊕ D
7 ⊕ 9 ⊕ A

2 F ⊕ E ⊕ D
0 ⊕ 8 ⊕ 13

3 3 ⊕ 4 ⊕ 8 ⊕ E ⊕ H
4 2 ⊕ 4 ⊕ 6 ⊕ 7 ⊕ C ⊕ F
5 0 ⊕ 2 ⊕ 9 ⊕ 11 ⊕ B ⊕ H
6 7 ⊕ 5 ⊕ 10 ⊕ 12 ⊕ A ⊕ G

temporary units required
A B,A, D,H,

F,C, G
E

temporary units available
D,F

Figure 9. Schedule for iterative encoding after mapping of temporary
equations (10) and (12)

The next insertion is equation (14) H=XOR(14,G) on core
3. Core 3 is selected, because H is referenced by equation
(3) is already assigned to core 3. Further insertions follow:
equations (7) (A=XOR(2,3)) on core 1, (8) B=XOR(4,5) on
core 2, (9) C=XOR(11,12) on core 5, (11) E=XOR(10,11)
on core 4 and (13) G=XOR(1,6) on core 3.
Backfilling - When all equations are mapped, equations
are shifted leftwards. This causes that each equation is
executed as soon as possible. Shifting is allowed only when
all references to temporary variables do not violate data
dependencies. Concretely, all equations must be rechecked
for a backfilling possibility as long temporary equations are
shifted. The backfilling terminates, when there is no equation
that can be shifted anymore. In the example, the equations
in slot 1, 2 and 6 can be shifted to earlier time steps.

E. Improving Equations Sets

Even for iterative coding with well designed schedules,
uneven utilization of cores may occur. Because of that, one
should vary the Cauchy matrix and the modular polynomial
to find equation sets that can be evenly distributed on a given
number of cores.
For k=5, m=2 and six cores we found a couple of Cauchy

77

cores steps
1 2 3 4 5 6

1 B ⊕ C ⊕ D
7 ⊕ 9 ⊕ A

2 ⊕ 3
2 F ⊕ E ⊕ D

0 ⊕ 8 ⊕ 13
4 ⊕ 5

3 3 ⊕ 4 ⊕ 8 ⊕ E ⊕ H
14 ⊕ G

1 ⊕ 6
4 2 ⊕ 4 ⊕ 6 ⊕ 7 ⊕ C ⊕ F

10 ⊕ 11
5 0 ⊕ 2 ⊕ 9 ⊕ 11 ⊕ B ⊕ H

11 ⊕ 12
6 7 ⊕ 5 ⊕ 10 ⊕ 12 ⊕ A ⊕ G

temporary units required
G A B,A, D,H,

F,C, G
E

temporary units available
G,C, A,B, D,F

E H

Figure 10. Schedule for iterative encoding after mapping of all temporary
equations

cores steps
1 2 3 4 5 6

1 B ⊕ C ⊕ D
7 ⊕ 9 ⊕ A

2 ⊕ 3
2 F ⊕ E ⊕ D

0 ⊕ 8 ⊕ 13
4 ⊕ 5

3 3 ⊕ 4 ⊕ 8 ⊕ E ⊕ H
14 ⊕ G

1 ⊕ 6
4 2 ⊕ 4 ⊕ 6 ⊕ 7 ⊕ C ⊕ F

10 ⊕ 11
5 0 ⊕ 2 ⊕ 9 ⊕ 11 ⊕ B ⊕ H

11 ⊕ 12
6 7 ⊕ 5 ⊕ 10 ⊕ 12 ⊕ A ⊕ G

temporary units required
G A B,A, D,G, H

F,C E

temporary units available
A,B, H D,F

C,G,E

Figure 11. Schedule after backfilling

matrices and modular polynomials that led to better iterative
equations than in the example. Particularly equation sets
with a number of XOR operation that can be divided by
the number of cores without rest are good candidates. When
using the polynomial M(x) = x3 + x2 + 1 and the Cauchy
matrix

{
4 5 1 6 1
5 4 7 2 6

}
we obtain equations with 30

XOR operations in total:

15 = XOR(D, E) A = XOR(1,2)
16 = XOR(2, 5, F, G) B = XOR(3, 4)
17 = XOR(9, 13, B, D, H) C = XOR(5, 6)
18 = XOR(0, 13, A, C, G) D = XOR(14, A)
19 = XOR(7, 8, C, D, F) E = XOR(10, B, C)
20 = XOR(1, 11, 12, E, H) F = XOR(9, 12)

G = XOR(4,7,11)
H = XOR(0, 8)

These equation can be mapped onto 6 cores as shown in
Fig. 12 with 5 XORs on every core.

cores steps
1 2 3 4 5

1 D ⊕ E
10 ⊕ B ⊕ C

4 ⊕ 7 ⊕ 11
2 2 ⊕ 5 ⊕ F ⊕ G

14 ⊕ A
1 ⊕ 2

3 9 ⊕ 13 ⊕ B ⊕ D ⊕ H
3 ⊕ 4

4 0 ⊕ 13 ⊕ A ⊕ C ⊕ G
5 ⊕ 6

5 7 ⊕ 8 ⊕ C ⊕ D ⊕ F
0 ⊕ 8

6 1 ⊕ 11 ⊕ 12 ⊕ E ⊕ H
9 ⊕ 12

Figure 12. Schedule for an improved code

The improved equation set shows better properties even
when used for block parallel coding. The unit accesses could
be reduced, which is expressed by m = 1.73 (unit access
multiplicity), compared to m = 2.0 in the basis variant. The
rest of the measures (a, rinp, rout, u, d) do not change (see
IV-A). The improvement of the equation-oriented iterative
schedule is expressed by the measures given in Tab. V.
Compared to Tab. IV, the amount of accessed data (a) is
reduced and less resources need to be accessed by a core
(rinp). Whereby these two measures could be decreased,
other measures are only slightly increased. The multiplicity
of accesses increases from m = 1.03 to m = 1.13,
and the non-local references increase (d). Taking the better
utilization of the cores by the improved equations into
account, the improvements prevail.

equation-oriented iterative coding (improved eqn.)
core relation

1 2 3 4 5 6 average to block
level par.

a 0.26 0.3 0.26 0.26 0.2 0.26 0.26 × 1.6

rinp 4 3 3 4 2 3 3.16 × 0.63
rout 1 1 1 1 1 1 1 × 0.5
u 1.3 1.3 1.3 1 1.5 1.3 1.3 × 0.43

m 1 1.25 1 1 1.3 1.2 1.13 × 0.65

d 2 2 2 2 3 2 2.16 +2.16

Table V
IMPROVED EQUATION-ORIENTED ITERATIVE CODING (k=5,m=2)

F. Comparison

The quality a parallel coding is characterized by two
aspects. The first characterizes how uniform the workload
can be distributed. The other aspect is the access locality

78

to input and output data. These aspects are used for a
comparison of block level parallelism and equation-oriented
parallelism with iterative equations. The explanation is
based on the values given in Tab. III. We exclude the
direct equation variant because of the high redundancy
in calculations which also influences data access in a
disadvantageous way.

Workload distribution:

• block parallel coding - As long as large amounts of
input data are processed, the workload is distributed
evenly. Assuming a workload unit of a single core of
chunksize, the input data size divided by the number
of cores must be bigger than chunksize. An uneven
distribution may occur only for small accesses or for
offcuts.

• equation-oriented iterative coding - An uneven
distribution is often the case when an arbitrary
Reed/Solomon code is applied. To reach an even dis-
tribution of workload, the equation set must be specif-
ically constructed. This can be done for encoding by
choosing the specific code by the modular polynomial
and one out of many possible Cauchy matrices. For
decoding, the code is fixed and a comparable choice
is not available. When the number of faulty devices f
is less than m, one can choose to use k from k+m-
f devices for decoding. This gives several variants
for decoding that differ in computation effort and also
differ in terms of workload distribution. It is worth to
vary the devices used for decoding to find a proper
decoding equation set that allows even distribution.

Access locality:

• block parallel coding - Every core accesses a part of
the input and output data which is the total data size
divided by the number of cores. In terms of size this is
the best possible result. However, the accessed data by
a single core is scattered over all devices and all units
on them. In addition, data units are typically accessed
several times by different equations, in average every
unit is accessed almost two times. This requires buffer
space or several subsequent accesses, which relativizes
the access size aspect.

• equation-oriented iterative coding - The data size
that is accessed by a core is about two times larger,
compared to block parallel coding (1.6 for the improved
schedule). But this relates to the multiple accesses to a
unit when block parallel coding is applied. Equation-
oriented coding accesses data units mostly one time
(in average 1.03 for the example code). This results
in roughly the same accessed data amount for both
variants when there is no local buffering of input data.
A clear advantage of equation-oriented coding is that
only a small number of storage devices is accessed from

a core. If a device is accessed, then also less units are
used for coding on a core compared to block parallel
coding.

It is worth to invest further work to equation-oriented coding.
A proper choice of the code and a preparation of the
equations for an even workload distribution is necessary.

V. SUMMARY

In this paper variants of parallel coding for reliable storage
systems have been described. We started from a Cauchy-
Reed/Solomon code and decomposed the coding into sev-
eral parts, described by equations. A distribution of these
equations on a number of processor cores is one variant
of parallel coding. When the code is chosen properly, the
(i) workload of equations can be evenly distributed and (ii)
access to input and output data for coding is held local on
specific data units for every processor core. Compared to
block level parallelism, equation-oriented parallelism con-
centrates the data accesses of a core on specific regions of
data that is associated with partitions or logical devices. This
will be an advantage for software-based coding performance
on multicore processors.

REFERENCES

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD:
An Efficient Scheme for Tolerating Double Disk Failures
in RAID Architectures . IEEE Transactions on Computers,
44(2), February 1995.

[2] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby,
and D. Zuckerman. An XOR-based Erasure–resilient Coding
Scheme. Technical Report TR-95-048, International Com-
puter Science Institute, August 1995.

[3] A. Brinkmann and D. Eschweiler. A Microdriver Architecture
for Error Correcting Codes inside the Linux Kernel. In Pro-
ceedings of the ACM/IEEE Conference on High Performance
Computing, SC 2009. ACM, 2009.

[4] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur. PVFS:
A Parallel File System for Linux. In Proceedings of the
4th Annual Linux Showcase and Conference, pages 317–327,
2000.

[5] M. L. Curry, A. Skejellum, H. L. Ward, and R. Brightwell.
Acellerating Reed-Solomon Coding in RAID Systems with
GPUs. In Proceedings of the 22nd IEEE Int. Parallel and
Distributed Processing Symposium. IEEE Computer Society,
2008.

[6] O. J. Frahm and P. Sobe. A Block Device Driver for Parallel
and Fault-tolerant Storage. In PARS Workshop 2010: ARCS
’10 Workshop Proceedings. VDE Verlag, Berlin, Offenbach,
2010.

[7] C. Huang and L. Xu. STAR: An Efficient Coding Scheme
for Correcting Triple Storage Node Failures. In FAST’05:
Proceedings of the 4th USENIX Conference on File and
Storage Technologies, pages 15–15, Berkeley, CA, USA,
2005. USENIX Association.

79

[8] T. Jing, Z. Yang, and Y. Dai. SEC: A Practical Secure Erasure
Coding Scheme for Peer-to-Peer Storage Systems. In 14th
Symposium on Storage System and Technology, 2006.

[9] R. Katz, G. Gibson, and D. Patterson. Disk System Architec-
tures for High Performance Computing. In Proceedings of the
IEEE, pages 1842–1858. IEEE Computer Society, December
1989.

[10] H. Klein and J. Keller. Storage Architecture with Integrity,
Redundancy and Encryption. In Proceedings of the 23rd IEEE
Int. Parallel and Distributed Processing Symposium, DPDNS
Workshop. IEEE Computer Society, 2009.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An Architecture for
Global-scale Persistent Storage. In Proceedings of ACM
ASPLOS. ACM, Nov. 2000.

[12] J. S. Plank. A Tutorial on Reed-Solomon Coding for Fault-
Tolerance in RAID-like Systems. SOFTWARE - PRACTICE
AND EXPERIENCE, 27(9):995–1012, September 1997.

[13] J. S. Plank. Jerasure: A Library in C/C++ Fasciliating Erasure
Coding to Storage Applications. Technical Report CS-07-603,
University of Tennessee, September 2007.

[14] J. S. Plank and Y. Ding. Note: Correction to the 1997
Tutorial on Reed-Solomon Coding. Technical Report CS-
03-504, University of Tennessee, April 2003.

[15] J. S. Plank and L. Xu. Optimizing Cauchy Reed-Solomon
Codes for Fault-Tolerant Network Storage Applications. In
NCA-06: 5th IEEE International Symposium on Network
Computing Applications, Cambridge, MA, July 2006.

[16] I. Reed and G. Solomon. Polynomial Codes over Certain
Finite Fields. Journal of the Society for Industrial and Applied
Mathematics [SIAM J.], 8:300–304, 1960.

[17] P. Sobe. Data Consistent Up- and Downstreaming in a
Distributed Storage System. In Proc. of Int. Workshop on
Storage Network Architecture and Parallel I/Os, pages 19–
26. IEEE Computer Society, 2003.

[18] P. Sobe and V. Hampel. FPGA-Accelerated Deletion-tolerant
Coding for Reliable Distributed Storage. In ARCS 2007
Proceedings, pages 14–27. LNCS, Spinger Berlin Heidelberg,
2007.

[19] P. Sobe and K. Peter. Comparison of Redundancy Schemes
for Distributed Storage Systems. In 5th IEEE International
Symposium on Network Computing and Applications, pages
196–203. IEEE Computer Society, 2006.

[20] P. Sobe and K. Peter. Flexible Parameterization of XOR based
Codes for Distributed Storage. In 7th IEEE International
Symposium on Network Computing and Applications. IEEE
Computer Society, 2008.

80

