
Wofs: A Distributed Network File System Supporting Fast Data Insertion and
Truncation

Cheng-Chia Wang and Yarsun Hsu
Department of Electrical Engineering,

National Tsing Hua University
Hsinchu, Taiwan

agigi@hpcc.ee.nthu.edu.tw, yshsu@ee.nthu.edu.tw

Abstract—Distributed file systems have become popular in
recent years. However, they still lack functions for doing fast
arbitrary data insertion and truncation. To solve the problem,
we present Wofs, an object-based distributed network file
system which supports fast arbitrary data insertion and
truncation. Wofs splits a file into many small objects, stores
these objects in remote file servers, and uses a special B+tree
[1][4] to manage the metadata of these objects. Besides, Wofs
uses the object-range locking policy to avoid data incoherence
and improve performance.

Keywords-file system; insert; truncate; object; B-tree

I. INTRODUCTION
With the development of high-speed networks,

distributed file systems have become popular in recent
years. More and more companies build their distributed file
systems to provide commercial transactions and services.

Lately the concept of object-based storage has been
brought up [7]. The main concept of object-based storage is
to offload the space management component of an existing
file system to the storage device itself. Application clients
thus request for an object (or file) instead of many disk
blocks. Some distributed file systems combined with object-
based storage devices (OSDs), such as Ceph [14] and zFS
[9], have also been presented.

But until now, there are still no file systems supporting
fast arbitrary data insertion and truncation. In this paper we
present Wofs, an object-based distributed network file
system with support for fast arbitrary data insertion and
truncation. Wofs splits a file into many small objects, stores
these objects in remote file servers, and uses a special B+tree
[1][4] to manage the metadata of these objects. Besides,
Wofs uses the object-range locking policy to avoid data
incoherence and improve performance.

II. RELATED WORK
As mentioned in Section I, fast arbitrary data insertion

and truncation haven’t been supported on general file
systems, but have already appeared in database systems.
EXODUS [2] is a classic model of object-oriented
databases. But EXODUS is a local database system, not a
distributed network file system.

B+tree is usually used to record the information of
extents, or directory contents. Xfs [12] is a classic model of
the file systems which utilize B+tree. It uses B+tree to
record free extents, file extent maps, and directory contents.
B+tree enables xfs to become more scalable and stable.
However, xfs doesn’t use B+tree to handle data insertion
and data truncation. As far as we know, there has been no
file system using B+tree to efficiently handle data insertion
and data truncation so far.

Since there is still no real OSD manufactured and sold in
stores, we modify two programs respectively called v9fs [13]
and spfs [11] for the implementation of our Wofs. The two
programs communicate with each other via the 9p protocol
[6] to simulate OSDs. We also modify the 9p protocol to
support data insertion and data truncation in Wofs.

III. DESIGN AND IMPLEMENTATION

A. The methods for data insertion and data truncation
Before we introduce the architecture of Wofs, we need

to introduce how to do data insertion and data truncation in
a file system first. As shown in Fig. 1, without supporting
data insertion and data truncation like Wofs, a file system
still can do data insertion by reading out all data after the
specific offset, merging with to-be-inserted data, and then
writing them back to the file. But this method for data
insertion is very inefficient. The bigger the file is, the longer
time the data insertion needs to take. Data truncation also
needs to read out and write back data, so it has the same
problem, too. So without a special mechanism, data
insertion and data truncation can take a lot of time to do.

To solve this problem, we can just split a file into many
fixed standard-sized chunks (objects) with a data structure
managing them, and then do data insertion by just reading
data out and writing back data as shown in Fig. 2. Thus, the
amount we read out and write back is much smaller, and the
time needed for data insertion will be much less, too. Data
truncation works similarly. That is the main reason why we
split a file into many objects in Wofs.

2010 International Workshop on Storage Network Architecture and Parallel I/Os

978-0-7695-4025-2/10 $26.00 © 2010 IEEE

DOI 10.1109/SNAPI.2010.13

43

Figure 1. Normal insertion in common file systems.

In Wofs, we allow a user to insert the data of any size at
any offset of a file. We also allow a user to truncate any
range of a file. But to maintain the performance of data
insertion and data truncation, we have to limit the object size
in Wofs.

To limit the object size after data insertion, we have to
split this inserted object into many smaller objects if the size
of the inserted object is beyond the standard object size. Just
as shown in Fig. 2, after Step 3 of insertion, the inserted
object “A” becomes too large, so it must be split into 3 new
objects “L”, “M” and “N” to limit the sizes of all objects.
Also, after data insertion or data truncation, sometimes the
size of some object will become smaller than the standard
object size, like the new object “N” in Fig. 2. To support this,
Wofs is designed to allow a file to have many objects with
various sizes, but it needs a well-designed architecture to
support that.

B. The architecture of Wofs
Wofs has three components: one centralized metadata

server (MDS), several clients and several OSD servers. The
OSD server is the remote storage server of Wofs used to
store objects. They are connected by a network. The
architecture of Wofs is shown in Fig. 3.

As implied by the name, the centralized metadata
server of Wofs stores all metadata in Wofs and is inquired
for the metadata by clients. To shorten the time needed for
getting metadata in MDS, MDS stores all metadata in
memory and just stores the metadata in the disk at some
fixed times.

The clients communicate with MDS for metadata, and
then use the metadata to access OSD servers. In essence,
they are Linux kernel modules with network functions in
Wofs.

Figure 2. Quick insertion in Wofs.

The OSD servers are the remote storage servers of
Wofs used to store objects. In Wofs, a file is split into many
chunks, and we use OSD servers to store these chunks. In
OSD servers, these chunks are called “objects”. But because
there is no real object-based disk commercially available,
we use a program called “spfs” [11] to simulate an object-
based device and call it an OSD server. So in fact, we use
this program to control objects and store these objects in the
form of files on ext3.

The communication among these three components in
Wofs is shown in Fig. 3. In Wofs, MDS and OSD servers
need not communicate with each other. They have no
information needed to exchange with each other. Only
clients exchange information with them to complete all
work.

Figure 3. The communication for file access in Wofs.

44

C. The communication in Wofs
Wofs is a Linux file system, and we design it to

support three file types: directories, files, and symbolic
links. The content of a directory is the metadata of all files
included in this directory, and the content of a symbolic link
is the name or path of the directory or file it points at. Since
the contents of directories and symbolic links are small, we
see the contents as their metadata and just store them in
MDS. Storing all data of directories and symbolic links in
MDS is good for performance. Clients can know which file
is included in a specific directory by just accessing MDS
without accessing OSD servers. Besides, since MDS stores
all metadata in its memory, we can more quickly get the
contents of directories and symbolic links.

But files in Wofs are different. Because the data of a
file is usually big, we need to store file data in disks. In
Wofs, the data of a file is split into many objects and stored
in OSD servers, but the metadata of that file is stored in
MDS. The metadata of a file includes the information about
which OSD servers objects are stored in. So clients need to
access MDS, and then access OSD servers. If we choose to
read this file, we cannot allow other clients to modify this
file simultaneously. So in Wofs, MDS also takes charge of
locking the metadata to avoid data incoherence.

As shown in Fig. 3, Wofs does communication three
times to accomplish one file access. Clients do the 1st and
the 3rd communication with MDS, and do the 2nd
communication with OSD servers. At the 1st
communication, a client delivers some information to tell
MDS the file and the file range it wants to access. And then,
MDS will find out which objects reside at that file range and
lock the metadata of these objects. Then, MDS sends clients
some information about which OSD servers these objects
are stored in. At the 2nd communication, clients use this
information to access correct OSD servers to get correct
object data. At the 3rd communication, clients tell MDS the
file access is done, and MDS will unlock or modify the
metadata of these objects.

Whether this file access is read, write, insertion,
truncation or deletion, MDS locks the metadata of objects at
the 1st communication and unlocks it at the 3rd
communication. During the whole period of file access, the
metadata of the accessed objects is locked and protected. So
we can ensure that data incoherence won’t occur in Wofs.

D. MDS
As mentioned in Section III.B, MDS stores all

metadata in memory to accelerate the inquiry of metadata.
To manage all metadata efficiently, we use a simple
hierarchical data structure to record the file hierarchy of
Wofs. As shown in Fig. 4, the root of this hierarchical data
structure records all system metadata about this file system.
Then the root points to the metadata of the top directory.

Finally, by traversing the hierarchical data structure, we can
find the metadata of files we want to access.

Figure 4. The hierarchical data structure used to record the file hierarchy

of Wofs.

In this hierarchical data structure, the metadata of
directories, files and symbolic links records different
contents. The metadata of a directory records the memory
address of the metadata of the directories or files belonging
to this directory. The metadata of a symbolic link records
the name or path of the directory or file it points at. And the
metadata of a file is a data structure called bptree used to
manage the metadata of all objects belonging to this file.

As mentioned in Section III.A, splitting a file into
many chunks to do data insertion and data truncation is a
practical way to reduce the time consumption. But since
Wofs supports insertion and truncation, some objects will be
added, deleted or truncated, so the metadata of these objects
will be added, deleted or modified. In terms of the data
structure, it is difficult to record and manage the object
metadata efficiently.

For example, as shown in Fig. 5, if we use an array to
manage the metadata of objects, this array will need another
linked list to record the metadata of objects whose size is
not a “standard size”. Since Wofs limits the maximum of the
object size to maintain the performance of insertion and
truncation as mentioned in Section III.A, we call this limited
object size “standard size” and call the object whose size is
not a standard size “nonstandard object” for convenience. If
a file has no nonstandard objects, we can find out the
specific object based on a specific offset by just dividing the
offset by the standard size. But if a file has one or more
nonstandard objects, dividing the offset by the standard size
gives the wrong object.

As shown in Fig. 5, if we want to know which object
the offset 2.3MB points at, we can get the object index of
this object by calculating the quotient of dividing 2.3 by 1
ignoring the remainder. This is because there is no
nonstandard object in front of the offset 2.3MB. But if we
want to know which object the offset 4.7MB points at,
dividing 4.7 by 1 will get 4, but the offset 4.7MB doesn’t
point at the object whose object index is 4 actually, because
there is one nonstandard object in front of the offset 4.7MB.
We can get the right object only by consulting the linked

45

list. So to find out the specific object based on a specific
offset, generally, the array needs to consult its linked list
from the head of this linked list until the object is found.

Figure 5. The data structure “array”. An array contains 2 parts: 1 array

table and 1 linked list. The array table records all object metadata and the
linked list just records the metadata of nonstandard objects.

But there comes a problem. With more nonstandard
objects, the linked list will get longer to record more
metadata of nonstandard objects, and then it becomes less
efficient to find the object. Moreover, when an object in the
middle of a file is deleted, the corresponding metadata also
needs to be deleted and the metadata in the rear of this array
also needs to be moved forward, which means this array
needs to be modified heavily and that takes a lot of time.

In comparison, as shown in Fig. 6, we can see the
bptree records all metadata of objects in the same way
whether these objects are standard or nonstandard, which
means that Wofs has stable performance. The bptree is a
kind of B+tree, so unbalanced sub-trees will not be
generated, which can maintain good performance. To look
for a particular object based on the specific offset quickly,
the bptree clusters some objects into a group, and records
the offsets of these objects. Then, the bptree continues to

Figure 6. The data structure “bptree”. Each group is a small table used to
record the local offset, and the squares in the bottom of the figure are used
to record the object size for each object. (The object arrangement in this

figure is the same as Fig. 5, but the data structures used to record them are
different.)

cluster these small groups into a bigger group, and records
the offsets of these small groups. The bptree repeats this
action until the root group is generated. Usually, a large file
has a higher bptree depth.

And after the bptree is built, we can start to find out
which object a specific offset points at by comparing this
offset with the local offsets recorded in groups from top to
bottom. For example, as shown in Fig. 6, if we want to
know which object the offset 3.2MB points at, we can
compare the number 3.2 with the local offsets recorded in
the root group. Because 3.2 is less than 4.5 but greater than
2, we need to choose the middle branch and go down to
Group B. When we go down to Group B, the number 3.2
has to be subtracted by 2 and we have to use the difference
of 1.2 to compare with the local offsets recorded in Group
B. Since 1.2 is less than 1.5 but greater than 1, finally we
can find the offset 3.2 MB points at the object whose object
index is 3.

The subtraction in the process of finding objects is the
concept of local offsets in bptree. The design of recording
local offsets is very important to bptree. With this, when
some object in the middle of a file is deleted, we can just
modify the metadata of affected objects and some local
offsets in bptree. This is the main advantage of using a
bptree to manage the object metadata. And in Section IV,
we will compare the performance of the bptree with the
array.

E. Client
A client in Wofs takes charge of accessing file data from

MDS and OSD servers. In essence, a client in Wofs is a
Linux kernel module modified from v9fs [13] which is
mentioned in Section II. It receives a user request from user
space of Linux and accesses MDS and OSD servers
according to this request. And at last, it replies the user with
the data one wants or some other information one wants to
know. Because the virtual file system of Linux doesn’t
support insertion and truncation, and Linux does not provide
system calls for insertion and truncation, we need to modify
the Linux kernel to support insertion and truncation.

F. OSD server
As mentioned previously, in Wofs, OSD servers store all

objects of files in the form of normal files on ext3, and the
filename of an object is its object index. The objects
belonging to the same file are stored in the same directory,
and the name of this directory is the inode number of this
file. Since all contents of directories and symbolic links are
stored in MDS, unlike files, directories and symbolic links
store nothing in OSD servers.

46

IV. PERFORMANCE EVALUATION

A. Hardware specification
Before we discuss the performance of Wofs, we have to

know the specification of computers used to evaluate the
performance of Wofs. Because we need a lot of clients to
evaluate the performance of Wofs in Section IV.E, we use 4
computers with 8 physical CPU cores as our clients to create
32 clients totally. Then, to handle many requests from these
32 clients, we also use this type of computer as our MDS.
We use five computers each with one physical CPU core and
one RAID-1 disk system as our OSD servers. All computers
have Gigabit Ethernet cards to connect with each other via a
Gigabit switch.

In all performance evaluations, basically, we use a bptree
to manage all metadata of a file and use the object-range
locking policy to lock objects. Besides, we always access a
file randomly and only access 1MB of this file. We also limit
the standard object size to be 1MB, and we only use 1 client
to do the performance evaluations. However, there are
exceptions in some performance evaluations as listed in
Table I. In Section IV.D, we will compare bptree with array,
so we also use an array to manage all metadata of a file in
Section IV.D. We also need to use different values of file
entropy to compare bptree with array, so the sizes of some
objects in Section IV.D need to be smaller than 1MB. The
definition of file entropy will be introduced in detail in that
section. Besides, in Section IV.E, we will compare object-
range locking with global locking, so we use the global
locking policy to lock objects in Section IV.E. Moreover, in
Section IV.E, we need a lot of clients to do performance
evaluations, so the number of clients in Section IV.E needs
to be more than 1. All the default experimental factors and
exceptions are summarized in Table I.

In all tests, we limit the object size to be 1MB. That is,
the standard size of an object is 1MB. This is because using a
bigger object size can reduce the object number in a file, and
then clients can reduce the communication with MDS. But
using a bigger object size will increase the amount of the
data read out and written back when we do insertion and
truncation. So for compromise, we choose 1MB to be the
standard size of an object.

TABLE I. THE EXPERIMENTAL FACTORS IN ALL PERFORMANCE
EVALUATIONS.

 Default Exceptions
Data structure for file
metadata

Bptree Array

Locking policy Object-range
locking

Global locking

Access model Random access None
The amount of a file
accessed once

1MB None

Object size 1MB < 1MB
The number of clients 1 >1(up to 32)

B. Basic performance evaluation
In this performance evaluation, we test 5 kinds of

operations. These 5 kinds of operations are shown in Fig. 7.
At first, we read 1 complete object from a file and write 1
complete object into a file as shown in Fig. 7(a)(b). And
then, we insert 1 complete object into the middle of some
object in one file just as shown in Fig. 7(c). The so-called
“Trunc 1” means we truncate 1 complete object in one file,
and the so-called “Trunc 2” means we truncate 1MB across
2 objects in one file and leave two objects of 0.5MB in size
just as shown in Fig. 7(d)(e). No matter what the operation
is, all accessed objects are randomly picked.

Fig. 8 and Fig. 9 show the results of the basic
performance evaluation. In Fig. 8, we can see these 4
operations have stable performance in Wofs no matter how
big the file is. It also shows that the time needed for 1
insertion is more than the time needed for 1 read or 1 write.
This is because inserting 1 object into the middle of an
object will result in data migration inside the OSD server as
shown in Fig. 2. The data migration means reading out data
and writing it back. In addition, we can see the time needed
for these 2 types of truncation is much less than the time
needed for 1 read or 1 write. This is because a client in
Wofs does not need to send a lot of data to OSD servers to
do truncation. It just needs to send the parameters about the
objects it wants to truncate to OSD servers, and the OSD
servers will truncate these objects for it. Moreover, we can
see the time needed for “Trunc 1” is much less than the time
needed for “Trunc 2”. This is because OSD servers just need
to delete the object truncated completely in “Trunc 1”, but
OSD servers have to truncate objects partially in “Trunc 2”,
which needs data migration inside OSD servers and takes
much more time than “Trunc 1”.

Fig. 9 shows the throughput of these 4 operations in
Wofs under the Gigabit Ethernet network. Because we use a
Gigabit switch to connect all components in Wofs,
theoretically, the speed a client sends data to OSD servers
can reach 125MB/s. Although clients need to do 3
communications with MDS and OSD servers in Wofs, and
MDS and OSD servers also need some time to handle the
requests from clients and access objects, in Fig. 9, we still
can see that the throughput of read and write in Wofs can
reach 82MB/s. Besides, in Fig. 9, although the data
migration inside OSD servers takes some time, we still can
see the throughput of insertion in Wofs can reach 60MB/s.
Furthermore, in Fig. 9, we can see the throughputs of “Trunc
1” and “Trunc 2” are much more than the throughputs of
read, write and insertion. We see the throughput of “Trunc 1”
can reach about 700MB/s, and the throughput of “Trunc 2”
can reach about 290MB/s. Because clients just need to send
the parameters for truncation to OSD servers to do
truncation, the throughput of truncation can be much larger
than the bandwidth of Gigabit Ethernet.

47

Figure 7. The access models for basic performance evaluation.

Figure 8. The time needed for doing 1 read, 1 write, 1 insertion and 1

truncation with different file sizes. (The curve of the performance of read
almost overlays that of write.)

C. Insertion and truncation
In Section IV.B, we can see Wofs has stable and good

performance in data insertion and data truncation with
variable file sizes. Now we compare Wofs with ext3 to
evaluate the advantage of supporting data insertion and data
truncation. We choose to compare Wofs with ext3 because
ext3 is the most popular file system in Linux and OSD
servers use it as their base file system to store object data.
Fig. 10 shows the results of this comparison. The so-called
“Insert”, “Trunc 1” and “Trunc 2” in Fig. 10 are just the
access models shown in Fig. 7. Besides, because Wofs is a
distributed network file system and ext3 is a local file
system, to compare them fairly, we eliminate the time
needed for delivering data or parameters in the network to
test the time required for doing insertion and truncation in
Wofs.

Figure 9. The throughput of read, write, insertion and truncation in Wofs

with different file sizes.

Figure 10. The time needed for doing 1 insertion and 1 truncation on Wofs

with different file sizes ignoring the time needed for network
communication, and the time needed for doing 1 insertion and 1 truncation

on ext3 with different file sizes.

In Fig. 10, we can see Wofs has stable performance in
data insertion and data truncation as usual, no matter how big
the file we access is. In comparison, in Fig. 10, we can see
the bigger file we insert and truncate, the more time needed
for doing insertion and truncation in ext3. It shows the
advantage of supporting data insertion and data truncation. In
Fig. 10, we can see the time needed for doing insertion and
truncation in Wofs is a little more than the time needed in
ext3 when the file size is 1MB. This is because the object
size in Wofs is equal to 1MB, and the file which is 1MB in
size only has 1 object. So inserting or truncating a file in
Wofs is totally the same as inserting or truncating a file in
ext3 except that Wofs needs to do communication inside
itself to do 1 file access but ext3 doesn’t need that. Except
that special case, Wofs has better performance than ext3 in
data insertion and data truncation ignoring the time needed
for network communication.

48

D. Bptree and array
Since the performance of the data structures used to

manage the file metadata is very important to Wofs, we also
need to test and compare the performance of these data
structures. We use 2 different data structures to manage the
file metadata for comparison: bptree and array. The bptree is
the data structure shown in Fig. 6, and the array is the data
structure shown in Fig. 5. We have already described the
disadvantage of the array and the advantage of the bptree in
Section III.D.

Now, to discuss how much the number of nonstandard
objects in a file affects the performance of bptree and array,
we need to define a value called “file entropy”. File entropy
means the ratio of the number of nonstandard objects in a
file to the total number of all objects in a file. From Section
III.D, we know the array has worse performance with bigger
file entropy. But the value of file entropy does not affect the
performance of bptree at all.

To evaluate the actual effect of the file size and the file
entropy on the performance of bptree and array, we do this
test by reading one object from a file and measure the time
MDS needs to handle a read request. Fig. 11 and Fig. 12
show the read performance of bptree and array based on
different file sizes and different values of file entropy. In Fig.
11, we can see the performance of the bptree is almost not
affected by different values of file entropy, but the
performance of the bptree is slightly affected by different file
sizes. This is because a large file has a higher bptree, and
MDS needs a little more time to traverse the entire bptree to
access the object metadata. So MDS needs a little more time
to handle the request for a large file. In comparison, the
performance of the array is not so stable and much affected
by different file sizes and different values of file entropy. By
comparing Fig. 11 with Fig. 12, we can see MDS needs
much more time to handle a read request when the file size
becomes larger and the value of file entropy becomes bigger,
which is going to dominate the total time needed for doing 1
complete operation. Besides, we can see the bptree has much

Figure 11. The time MDS needs to handle one read request with different

file sizes and different values of file entropy when using the bptree to
manage object metadata. (The number “X” in BPTREE[X] in the right side

of the figure means the object number of a file.)

Figure 12. The time MDS needs to handle one read request with different

file sizes and different values of file entropy when using the array to
manage object metadata. (The number “X” in ARRAY[X] in the right side

of the figure means the object number of a file.)

more stable performance than the array, and the bptree
always maintains a much better performance

E. .Object-range locking and global locking
Traditionally, different users can’t modify the same file

simultaneously even when the ranges of the file they modify
are different. In Wofs, MDS locks the metadata of accessed
objects when a client is accessing the data of those objects,
and MDS uses the object-range locking policy to lock the
object metadata. With the object-range locking policy,
different clients can modify the data of different objects at
the same time even when these different objects belong to
the same single file. So we can infer that the performance of
object-range locking should be better than the performance
of global locking. To verify this inference, we do a test to
evaluate the performance of object-range locking and global
locking.

Fig. 13 shows the relationship between the number of
clients and the number of times of write error per successful
write in Wofs. A write error means a client tries to write but
it fails. In object-range locking, a client can fail on a write
and get a write error only if another client is writing the
same object with the metadata of that object locked. In
global locking, a client will fail to write and get a write error
if another client is writing to any place of the file since the
second client must have the file locked already.

The object number of the file in Fig. 13 is 1024, and
each client tries to write only one object randomly into the
same file as one write. So it is difficult for 2 clients to write
the same object at the same time theoretically. In Fig. 13,
we can see clients easily fail to write the same file
simultaneously if MDS uses the global locking policy. And
inversely, clients can easily succeed to write the same file
simultaneously if MDS uses the object-range policy. Here
we verify the performance of object-range locking is really
better than that of global locking. With the object-range

49

locking policy, many clients may easily modify the same
file simultaneously without waiting for others.

Figure 13. The number of times of the write error per write with different

locking policies and different client numbers.

V. CONCLUSION
Wofs provides a more efficient method for quick file

modification by supporting fast arbitrary data insertion and
truncation. With Wofs, we can modify a file more efficiently
and neatly. We don’t need to modify a file by rewriting a
large part of the whole file anymore. Besides, it is much
better to use the bptree to record and manage the metadata of
objects. It provides stable and good performance, and also
helps MDS access and modify object metadata more
efficiently. Moreover, the object-range locking policy can
reduce the frequency of access error significantly and
improve the performance of Wofs.

ACKNOWLEDGMENT
The authors would like to thank the support from

National Science Council under grant 96-2221-E-007-131-
MY3.

REFERENCES
[1] R. Bayer and E. McCreight, “Organization and maintenance of large

ordered indexes”, Acta Informatica, vol. 1, pp. 173–189, 1972.
[2] M. J. Carey, D. J. DeWitt, J. E. Richardson, E. J. Shekita, “Object and

file management in the EXODUS extensible database system”, in
Proceedings of the 12th International Conference on Very Large
Data Bases, pp. 91–100, Aug. 1986.

[3] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVFS: A
Parallel File System for Linux Clusters”, in Proceedings of the 4th
Annual Linux Showcase and Conference, pp. 317–327, 2000.

[4] D. Comer, “The Ubiquitous B-Tree”, ACM Computing Surveys
(CSUR), vol. 11, no. 2, pp. 121–137, Jun. 1979.

[5] S. Ghemawat, H. Gobioff, and ST. Leung, “The Google File System”,
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 29–43,
Dec. 2003.

[6] E. V. Hensbergen and R. Minnich, “Grave robbers from outer space:
Using 9p2000 under linux”, in Proceedings of Freenix Annual
Conference, pp. 83–94, 2005.

[7] M. Mesnier, G. R. Ganger, and E. Riedel, ”Object-Based Storage”,
IEEE Communications Magazine, vol. 41, no. 8, pp. 84–90, Aug.
2003.

[8] Myricom, “Myrinet”, http://www.myri.com/.
[9] O. Rodeh, and A. Teperman, “zFS - A Scalable Distributed File

System Using Object Disks”, in Proceedings of the 20th IEEE / 11th
NASA Goddard Conference on Mass Storage Systems and
Technologies, pp. 207–218, Apr. 2003.

[10] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for
large computing clusters”, in Proceedings of the 2002 Conference on
File and Storage Technologies (FAST), pp. 231–244, Jan. 2002.

[11] “spfs”, http://sourceforge.net/projects/npfs.
[12] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and

G. Peck, “Scalability in the XFS File System”, in Proceedings of the
USENIX 1996 Technical Conference, pp. 1–14, 1996.

[13] “v9fs”, http://swik.net/v9fs.
[14] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C.

Maltzahn, “Ceph: A Scalable, High-Performance Distributed File
System”, in Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI), pp. 307–320, 2006.

50

