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Abstract— Continuous data stream processing systems have 
offered limited support for data persistence in the past, for 
three main reasons: First, online, real-time queries examine 
current streaming data and (under the assumption of no server 
failures) do not require access to past data; second, stable 
storage devices are commonly thought to be constraining 
system throughput and response times when compared to main 
memory, and are thus kept off the common path; finally, the 
use of scalable storage solutions which would be required to 
sustain high data streaming rates have not been thoroughly 
investigated in the past. Our work advances the state of the art 
by providing data streaming systems with a scalable path to 
persistent storage. This path has low impact in the 
performance properties of a scalable streaming system and 
allows two fundamental enhancements to their capabilities: 
First, it allows stream persistence for reference/archival 
purposes (in other words, queries can now be applied on past 
data on-demand); second, fault tolerance is achievable by 
checkpointing and stream replay schemes that are not 
constrained by the size of main memory.  

Keywords; scalable storage systems; data streaming; fault-
tolerance. 

I.  INTRODUCTION 
Data sources that continuously produce data are abundant 

in today’s information-driven society, ranging from civilian 
and military surveillance devices [1], environmental sensors, 
mobile telephony base stations, network devices, stock 
market price monitors, and credit-card points of sale. A 
number of research projects [5][6][7][11][12] have 
investigated ways to achieve high-performance, online data 
stream processing. Some of these projects have led to 
business ventures [2][3][4] underlining the significant 
demand for this technology in today’s society. 

Modern streaming systems are designed for complex 
event processing (CEP) expressed in special stream-oriented 
query languages [5][6][7]. The data operated on are typically 
streams of records often referred to as tuples. In most 
common applications tuples are live— that is, recently 
produced— and associated with a monotonically increasing 
timestamp. In such applications, tuple processing is also 
associated with timeliness guarantees— that is, a response or 
trigger must be produced within a short time bound from the 
time a tuple is produced by the data source. However new 
types of applications such as fault-tolerant streaming (for 
example, for processing financial transactions), offline data-
warehouse style processing of streaming data, and 

verification of compliance or violation of service-level 
agreements (SLAs), have created interest to persisting 
streams for archiving/reference, replay, and/or post-facto 
introspection. 

Sources of continuously-produced information today are 
growing in both number and data rates produced. As one 
example, consider a mobile operator that needs to process an 
increasingly growing rate of call-detail-records per second as 
its operations expand in both geographical coverage (number 
of base stations) and client base (number of calls initiated per 
unit time). Such trends call for scalable streaming platforms 
that can keep up with data growth both in terms of capacity 
and I/O throughput. Scalable storage systems for such 
platforms should be designed, configured, and tuned for the 
specific characteristics of continuous data streaming. 

From the storage system perspective, the persistence of 
continuous data streams exhibits two main distinctive 
characteristics. First, streaming workloads consist largely of 
sequential writes/appends, with sequential reads taking place 
mostly during recovery or in retrospective queries. Whereas 
the read use-cases are certainly highly valuable, they are not 
expected to be the norm in actual deployments. Second, 
streaming workloads feature multiple concurrent writers on 
exclusively-owned or shared storage objects. The former 
case is expected to be prevalent in actual deployments and 
we therefore focus on it in this study. 

Continuous data streaming workloads present a number 
of challenges for the storage system designer. The storage 
system should be optimized for both latency and throughput 
since scalable data stream processing systems must handle 
both heavy stream traffic and produce results to queries 
within given time bounds, typically tens to a few hundreds of 
milliseconds. This means that the storage system should be 
designed to exhibit a large degree of parallelism for 
scalability and also to minimize the eventuality of high-delay 
events on the common path. Another important challenge is 
to guarantee data stability under different failure 
assumptions. 

In this paper we focus on scalable storage support for 
data stream processing systems for the types of applications 
described above. Our contributions are summarized here: 

1. Design of a high-performance stream processing engine 
I/O architecture that allows simultaneous persistence 
and communication of live and past (retrieved from 
storage) data streams. 
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2. Implementation of the architecture in the context of an 
open-source streaming middleware (Borealis [7]). 

3. Evaluation of the scalability of the architecture using an 
open-source scalable storage (PVFS2 [18]). 

We find that our design and implementation of the 
persistence path enables rich functionality with low impact 
on the performance properties of the stream processing 
system. In summary, our results show that the throughput of 
the persistence path when implemented with appropriate 
tuning over PVFS2 scales with increasing load. In addition, it 
adds a reasonable delay (about 20ms) per processing element 
in a well-provisioned system. 

Our experience with implementing persistence of 
concurrent streams efficiently over a scalable filesystem such 
as PVFS2 provides the following observations: 

• Synchronous filesystem metadata operations should be 
taken off the critical path, and if necessary replaced by 
asynchronous operations or removed altogether. Local 
filesystem metadata and/or self-identifying stream 
records can be leveraged to achieve consistency after a 
failure. 

• The latency of disk-synchronous (stable) writes can be 
reduced by increasing parallelism (stripe width) in file 
I/O operations. 

• Concurrent streams multiplexed on parallel filesystem 
servers produce I/O patterns that are not handled well by 
most general-purpose local filesystems. A log-structured 
or extent-based local filesystem is best suited for such 
patterns. 

The remainder of this paper is structured as follows: 
First, we relate our work to previous research on stream 
processing systems. Then we discuss our persistence 
architecture, highlighting the key factors expected to affect 
performance, and describe the storage systems used in this 
study. Finally we describe our experimental testbed and 
present our results on the performance properties of our 
system. 

II. RELATED WORK 
Traditional data streaming systems have offered limited 

support for stream persistence in the past. Systems such as 
Aurora/Borealis [5] and the Stanford STREAM Data 
Manager [7] have considered the need for persisting streams 
but have mainly focused on simple database interfaces (for 
example, to implement connection points in Aurora/Borealis 
[6]) or algorithmic studies of disk buffering policies [8]. 

Previous work on streaming data persistence was also 
motivated by applications such as network monitoring for the 
collection of network statistics, troubleshooting, and 
forensics. Hyperion [11] is one such system that proposes a 
log-based filesystem (LFS)-derived solution called 
StreamFS, which optimizes archival, indexing, and online 
retrieval of multiple data streams. While related in spirit and 
motivation to our work, to the best of our knowledge the 

Hyperion approach has not been studied in a continuous-
query streaming environment and has not been extended over 
scalable storage platforms. 

High-availability (HA) solutions that adapt process-pairs 
approaches to data streaming have been proposed in the past. 
In the work of Hwang et al. [9] upstream nodes retain tuples 
in memory buffers until receiving an explicit 
acknowledgment from downstream nodes that they have 
checkpointed the associated state and transferred it to a 
passive or active backup. This approach may result in tuple 
loss if upstream nodes run out of memory buffers while the 
recovery of failed downstream nodes takes longer than 
expected. It also results in underutilization of the overall 
system memory since part of it is dedicated to holding 
duplicate checkpoint state. 

More recent research work on stream fault-tolerance such 
as Kwon et al. [10], have experimented with scalable storage 
solutions but have not examined their scalability properties 
in the context and detail of this paper. Kwon et al. proposed 
a rollback-recovery scheme using asynchronous 
checkpointing (implemented in Borealis [5]) with 
checkpoints stored in a distributed and replicated filesystem 
(their implementation uses HDFS [19]). Their work is related 
to ours in its focus on persisting operator state on scalable, 
fault-tolerant storage. Their specific focus however is on 
scheduling periodic concurrent checkpoints, whereas our 
focus is on the more general case of continuously streaming 
tuples (which includes checkpoints as a special case). 

Another recent related project is that of Hilley and 
Ramachandran [12], which focuses on a programming 
abstraction that integrates transport, manipulation, and 
storage of streaming data. Their work is related to ours in its 
goal for seamless integration of different data paths at the 
programming-abstraction level through a common API. 
However, their system does not focus or optimize for storage 
scalability and has not been thoroughly investigated as such. 

Streaming-type workloads with large files that are mostly 
appended to and read sequentially are also typical of Web 
search and Map-Reduce [14] type processing. The 
importance of such workloads has led to the design of 
systems such as the Google File System (GFS) [15]. GFS has 
been optimized for high throughput but makes no provision 
for reducing latency (for example writing a 64MB chunk to a 
GFS chunkserver can take about a second on a 1Gbps 
network). GFS is thus not immediately suitable for 
continuous stream processing applications. 

Finally, multimedia servers [17] are similar to data 
stream storage systems in that they handle sequential access 
patterns to the underlying data. Research on multimedia 
servers mostly during the 90’s has put emphasis on quality of 
service (QoS), disk scheduling, and optimizations of the read 
data path. Continuous stream processing applications exhibit 
a significant concurrent write activity and thus present a 
different set of challenges for the storage system. 



III. PERSISTENCE ARCHITECTURE 
Data flow in traditional stream processing systems takes 

place by communicating tuples produced and consumed by 
operators over data paths called streams [5][7]. Each 
operator is associated with a distinct pair of input and output 
queues. Operators are deployed within stream processing 
engines (SPE) on different nodes. An SPE is akin to a virtual 
machine specialized to providing runtime support for the 
execution of stream operators [6]. The data path between 
operators is commonly implemented through communication 
between memory buffers over the network. However, in 
systems where data loss is not acceptable, SPEs should be 
able to persist tuples so that they can be later retrieved from 
arbitrary points in time. 

A key concept in our scalable stream persistence 
architecture is that of a persistent stream object (PSO), a 
persistent image of the state of a queue Q over time T (tmost 

recent – tleast recent). A queue (and thus a PSO) is associated with 
a schema that describes the structure of its tuples– for 
example, a telephone call-detail record (CDR). PSOs are 
characterized by logical contiguity. Their physical 
representation may take different forms, such as a single 
storage object or a set of storage objects, and may be hosted 
in different types of containers, such as a RAID array or a 
distributed filesystem. A PSO is identified through an 
assigned ID that reflects the context of the associated queue 
Q: its schema, the operator it connects to, the position of this 
operator within the overall operator graph, and the 
description of the graph. 

A. SPE I/O architecture 
Each SPE serves multiple streams connecting pairs of 
queues, and may therefore be persisting on multiple PSOs. 
The data path between operator queues and PSOs extends the 
typical SPE structure such as found in the Aurora/Borealis 
system [5][6]. Incoming tuples from a stream S are 
shepherded by a thread (referred to as the Enqueue thread) to 
be enqueued into the SPE for processing by operator(s) that 
use S as one of their inputs. The tuples produced by the 
operators are placed on an output stream and dequeued by a 
separate thread (referred to as the Dequeue thread) and 
grouped into Stream Events (SEs). SEs are serialized objects 
grouping several tuples for the purpose of efficient 
communication. Our detailed description of the SPE I/O data 
path starts with the case of failure-free operation: 

Failure-free operation: SEs created by the dequeue 
thread are first serialized. If the streams they are associated 
with are set for persistence, the SEs enter the persist-event 
list, otherwise they move directly onto the forward-event list. 
A write operation to storage is initiated using an 
asynchronous API [13]. This write is typically stable; that is, 
the write is not complete unless the I/O has been flushed to 
disk— however the architecture can accommodate different 
semantics and tradeoffs. The asynchronous I/O operations 
are handled by a state machine in an event loop. For 
parallelism, we maintain a configurable window of N 
concurrently outstanding I/Os. Once a completion of a write 
I/O is posted by the storage system we first update a per-

stream index, and then move the persisted event data 
structure to the forward-event list. Subsequently a network 
send operation is initiated. The SE remains there until 
successfully sent out over the network. 

Operation under failure: When a downstream SPE 
node fails, all streams connected to queues on that node 
disconnect and no outgoing network communication takes 
place on those streams until reconnection (other streams 
however are not affected). SEs produced by local operators 
are still persisted as described during failure-free operation. 
However, in this case as soon as such SEs are stable they are 
deleted from memory. Other SEs belonging to still-
connected streams proceed to the forward-event list as 
described during failure-free operation. 

PSO indexing: As PSOs grow by appending serialized 
SEs to them, our I/O architecture maintains per-PSO indices 
mapping a given tuple identifier (a timestamp) into a 
serialized SE within a PSO. In the case of a filesystem 
implementation, the index points to a file offset where the SE 
containing the tuple requested is located. In our current 
prototype the PSO index is implemented using an Oracle 
Berkeley DB database. 

B. Storage system used in this study 
In this work we use the PVFS2 [18] clustered parallel 

filesystem. PVFS2 stripes files over a cluster of storage 
servers offering parallel I/O paths for scalable I/O 
performance. PVFS2 decouples metadata from data accesses, 
an approach first popularized by the NASD project [16]. One 
or more metadata servers are responsible for informing 
clients of the location of data in the storage servers but are 
not involved in the actual I/O operation. PVFS2 does not 
offer client-side caching, a feature that fits well workloads 
such as streaming with little or no data re-use. 

In Figure 1 we depict a (one of possibly several) SPE 
performing I/O asynchronously. Possible metadata updates 
during I/O are handled by the metadata server. Each storage 
(data) node maintains parts of several PSOs, each part 
identified by a pair (X, A) that stands for “corresponding to 
SPE X stored on data node A”. Data layout to storage servers 
in PVFS2 is done in a round-robin manner independent of 
their actual load. Despite the simplicity of this policy it 
should perform reasonably well for sequential stream 
accesses. 

We next focus on four important factors affecting 
performance. 

Metadata updates. In addition to I/O operations, a write 
operation may trigger a metadata update as a result of a 
change in the file size and/or the time of last modification or 
access. A metadata update may not be needed if overwriting 
a pre-existing file and maintenance of the last-modified or 
last-accessed timestamps has been disabled. However in 
cases where metadata updates are necessary, there are two 
implementation choices: The first is to synchronously flush 
the metadata update to disk ensuring durability. The second 
choice is to enable write-back caching at the metadata server, 
which should reduce durability but improve performance. 



 

Data stream workloads make the latter a viable alternative 
with the use of self-identifying tuples and when each data 
node runs a local filesystem that maintains its own metadata 
about local files. In such case, recovery of the file size or the 
time of last modification or access is possible by examination 
of the file contents and recovery of local filesystem metadata 
in storage nodes. For this reason we can safely use 
asynchronous metadata updates in our experiments. 

 

Data stability: For fault-tolerance, an SPE requires that 
tuples are stably written to disk prior to forwarding them on 
the network. Stable writes involve the disks on each I/O 
operation and are thus expected to affect response time. 
Throughput is expected to be affected to the degree of 
available parallelism (e.g., number of servers, number of 
writing threads per server, and number of disks per server 
involved) to avoid blocking on any such operation. 

Local filesystem: Concurrent writes from multiple SPEs 
interfere at storage servers. Within each storage server, write 
requests targeting different local files may reduce storage 
node efficiency if the local filesystem cannot handle such 
patterns very well. Log-based filesystems (LFS) or extent-
based filesystems are particularly suitable for such patterns. 
In many cases though, distributed file systems use general-
purpose filesystems that are not optimized for the concurrent 
sequential writes to large files typical of data streaming 
workloads. 

Block size (S). Using a large S improves the efficiency of 
data transfers, which is one of the reasons GFS uses a 64MB 
chunk. However a large S is not advantageous in a latency-
sensitive environment due to the high transfer time. In our 
experimental evaluation we use a moderate S value of 
256KB. 

IV. EXPERIMENTAL TESTBED 
Our experimental setup consists of a 16-node cluster of 

dual-CPU AMD 244 servers with 2GB DRAM running 
Linux 2.6.18 and connected through a 1Gbps Ethernet switch 
using Jumbo (9000 byte) frames. In this cluster we deployed 
the Borealis software release (as of summer 2008) and 
PVFS2 version 2.8.1. For selected experiments requiring 
more powerful servers we used dual quad-core (total of 8 

cores) AMD Opteron 2354 with 4GB of DRAM. Unless 
explicitly mentioned otherwise we use the dual-CPU 
machines in our experiments. 

In our experimental setup half of the PVFS2 nodes were 
configured as file servers—one of them doubling as metadata 
server— and the rest as clients. Each node of each filesystem 
was provisioned with a dedicated logical volume comprising 
four 40GB partitions of SATA disks in a RAID-0 
configuration with a 64KB stripe unit. PVFS2 was setup to 
stripe files using a 256KB unit, a value that was chosen to 
equal a full RAID stripe. The total capacity of the parallel 
filesystem in the 8-server setup was about 1.1TB. Each file 
server node used an underlying Linux filesystem of type ext3 
or xfs where noted. By default, PVFS2 uses a write-back 
data cache on its servers. In our experiments we modified the 
default policy to use synchronous writes (unless explicitly 
mentioned otherwise). 

V. RESULTS 
In this section we report results comparing Borealis 

performance with and without persistence over PVFS2. We 
use performance without the persistence path as a baseline. 

A. Baseline performance: Single node 
Table 1 describes streaming throughput in a Borealis 

setup with a single SPE, hosting a filter operator connected 
to a data source (sender) and a data sink (receiver) node. The 
filter operator inspects a fixed-size (integer) field in each 
tuple and forwards it along the operator’s single output 
stream. We chose a simple operator setup to focus on I/O 
performance rather than computational behavior of the 
streaming system. Throughput is in MB/sec and the tuple 
size varies from 256 bytes to 4KB. 

Batch size                                  

Tuple size 1 16 32 64

256 5 MB/sec 15 MB/sec 13 MB/sec 14 MB/sec    

1024 14 MB/sec 38 MB/sec 35 MB/sec 34 MB/sec

4096 31 MB/sec 63 MB/sec 52 MB/sec 45 MB/sec

Table 1 Baseline measurements with dual-core nodes. 
 

An important Borealis parameter is the batching factor at 
the source, which is the amount of tuples it injects into 
Borealis with each network I/O. The batching factor refers to 
the source node and does not constrain the Borealis servers 
into how they group tuples in performing I/O operations. We 
experimented with batching factors of 1, 16, 32 and 64 
tuples. Borealis servers use an adaptive grouping factor, 
which is inversely proportional to tuple size. 

In Table 1 we observe that Borealis performance 
improves with increasing tuple size due to gradually reduced 
per-tuple CPU overhead. The figure also indicates that tuple 
batching helps performance to a certain degree. For a 
batching factor of 16 and tuple size 4KB we observe a 
throughput of 63MB/sec which exceeds no-batching 
performance by a factor of two. This represents the highest 

Figure 1: Model of stream persistence over PVFS2.



throughput rate we have achieved using the dual-core server 
setup. All CPUs are fully saturated in all measurements taken 
in this benchmark. 

B. Storage performance: Single node 
We next evaluate the performance of the single SPE node 

of the previous setup with the persistence path enabled. We 
use two storage configurations: A single PVFS2 server 
performing synchronous writes (Pvfs2-sync) and one that 
does not (Pvfs2-async). We also evaluate a configuration 
(Str_Code) that includes the persistence path but omits calls 
into the PVFS2 client. Finally, we compare the above to 
baseline Borealis measurements. 

We use a batching factor of 16 to target the best 
performing configuration of the previous experiment. We 
have empirically determined that Borealis performs I/O 
(network or storage) at steady-state using fixed-size blocks 
of 184 tuples for the tuple sizes we have considered. The 
Borealis I/O size is thus 64KB, 184KB, and 736KB for tuple 
sizes 256 bytes, 1KB, and 4KB, respectively. 

In Figure 2 we observe that the differences between 
configurations become progressively more pronounced with 
increasing tuple size as the system becomes more I/O-bound. 
At 4KB tuple size, we observe that Pvfs2-async performance 
is about half that of non-persisting Borealis due to splitting 
the outgoing link bandwidth between persistence and regular 
communication traffic. 

 
Figure 2 Storage performance with a single Borealis node. 

 

Synchronous (stable) writes reduce PVFS2 performance 
by about 8MB/s or 15% compared to asynchronous writes. 
The majority of this overhead seems to be coming from the 
file/storage client itself as the Str_Code configuration 
indicates. The CPU of the SPE node is fully saturated in all 
cases in this experiment. Finally, measurements of I/O 
response time in the Pvfs2-sync setup report an average of 
20ms. 

To evaluate the impact of a faster SPE node we repeat 
this experiment for the Pvfs2-sync, and baseline 
configurations with 4KB tuple size and batching factor 16 on 
the 8-core server. In Table 2 we observe that all 
configurations benefit from running the SPE on a faster 
CPU. However, PVFS2 seems to receive a proportionally 
higher benefit improving its performance by a factor of two. 

We also observe that the PVFS2 configuration achieves more 
than half the throughput of the baseline configuration despite 
moving every tuple twice over the outgoing link. The reason 
for this is the additional parallelism within the PVFS2 client 
which can use the spare CPU cores (which the single 
network worker thread itself cannot use) to utilize a higher 
fraction of the outgoing link bandwidth. 

 
Borealis PVFS2

2-core 63 MB/sec 28 MB/sec

8-core 75 MB/sec 50 MB/sec

 
Table 2 Baseline storage measurements with 8-core nodes. 

 

C. Streaming and Storage Scalability 
In this experiment we vary the number of Borealis SPE 

nodes and the number of PVFS2 storage servers performing 
synchronous/stable writes. Each Borealis SPE node is 
hosting a filter operator (similar to previous experiments) 
and all operators are connected (input to output) via a single 
stream. 

 
Figure 3 Scalability of Borealis over PVFS2. 

 
Figure 3 depicts streaming performance with and without 

persistence when the Borealis and PVFS2 nodes vary from 
one to eight. We use a tuple size of 4KB and batch size of 
16. An initial observation in the case of non-persisting 
Borealis nodes is that increasing their number from 1 to 8 
results in a throughput drop from 62MB/s to about 52MB/s. 
We attribute this non-storage-related drop to imbalances in 
resource usage across nodes over the course of experiments 
in the chain of SPEs. 

For a single Borealis SPE we observe that (in accordance 
with Table 1) throughput is less that half of what is 
achievable without persistence and improves to exactly half 
with larger PVFS2 setups. The reason behind the 
improvement is better parallelization/overlap of the stable 
write operations. Increasing the load (number of Borealis 
SPE nodes) we observe a gradual drop in throughput that is 
partly attributable to the Borealis issues described earlier and 
partly (where the drop is steeper) to overload in smaller 
PVFS2 setups. In the case of 8 Borealis SPEs on a single 



PVFS2 server we observe a streaming throughput of about 
10 MB/s or a PVFS2 server write-throughput of about 80 
MB/s. Given that the server is not limited by either its 
network link or its CPU and the Borealis SPE nodes are not 
CPU-bound, we believe that in this case we are limited by 
the efficiency of the PVFS2 server local filesystem under 
many concurrent writers. 

 
Figure 4 Aggregate throughput of Borealis over PVFS2. 

 

Figure 4 provides a view of the aggregate throughput 
(calculated as the number of Borealis SPE nodes multiplied 
by SPE throughput towards the PVFS2 system) with 
increasing Borealis nodes. The figure shows that 
performance scales with increasing load. The minimum 
number of PVFS2 nodes needed to achieve the observed 
aggregate throughput with 1, 2, 4, 8 Borealis nodes is 8. 

VI. DISCUSSION AND CONCLUSIONS 
In this paper we have shown that stream persistence can 

be achieved in a scalable manner using a fully asynchronous 
event-driven SPE I/O architecture layered over an 
appropriately tuned parallel filesystem. This persistence path 
comes with an associated overhead: It requires the use of 
CPU and network bandwidth (as tuples to be communicated 
downstream are duplicated on the storage path). However, 
we have shown that the CPU overhead need not be high and 
it can be assigned to spare cores in multi-core CPUs; in 
addition, the network bandwidth may be needed mostly 
when there is spare bandwidth available, for example when 
downstream operators are overloaded (and thus cannot 
communicate at full speed) or have failed. 

In our evaluation we have considered scenarios of several 
SPE nodes persisting tuples at full speed. In a practical 
scenario however, persistence may be required only at 
selected tuple entry points, which are edge servers that inject 
tuples into SPE nodes. Entry points are I/O-intensive and 
thus better candidates than SPEs for serving as persistence 
gateways. Although we exhibited our persistence path 
implementation in the context of the Borealis system, our 
SPE I/O architecture is more general and can be applied to 
other data stream processing systems. 
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