
Scalable Storage Support for Data Stream Processing

Zoe Sebepou and Kostas Magoutis
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)
N. Plastira 100, Heraklion, GR-70013, Greece
{sebepou,magoutis}@ics.forth.gr

Abstract— Continuous data stream processing systems have
offered limited support for data persistence in the past, for
three main reasons: First, online, real-time queries examine
current streaming data and (under the assumption of no server
failures) do not require access to past data; second, stable
storage devices are commonly thought to be constraining
system throughput and response times when compared to main
memory, and are thus kept off the common path; finally, the
use of scalable storage solutions which would be required to
sustain high data streaming rates have not been thoroughly
investigated in the past. Our work advances the state of the art
by providing data streaming systems with a scalable path to
persistent storage. This path has low impact in the
performance properties of a scalable streaming system and
allows two fundamental enhancements to their capabilities:
First, it allows stream persistence for reference/archival
purposes (in other words, queries can now be applied on past
data on-demand); second, fault tolerance is achievable by
checkpointing and stream replay schemes that are not
constrained by the size of main memory.

Keywords; scalable storage systems; data streaming; fault-
tolerance.

I. INTRODUCTION
Data sources that continuously produce data are abundant

in today’s information-driven society, ranging from civilian
and military surveillance devices [1], environmental sensors,
mobile telephony base stations, network devices, stock
market price monitors, and credit-card points of sale. A
number of research projects [5][6][7][11][12] have
investigated ways to achieve high-performance, online data
stream processing. Some of these projects have led to
business ventures [2][3][4] underlining the significant
demand for this technology in today’s society.

Modern streaming systems are designed for complex
event processing (CEP) expressed in special stream-oriented
query languages [5][6][7]. The data operated on are typically
streams of records often referred to as tuples. In most
common applications tuples are live— that is, recently
produced— and associated with a monotonically increasing
timestamp. In such applications, tuple processing is also
associated with timeliness guarantees— that is, a response or
trigger must be produced within a short time bound from the
time a tuple is produced by the data source. However new
types of applications such as fault-tolerant streaming (for
example, for processing financial transactions), offline data-
warehouse style processing of streaming data, and

verification of compliance or violation of service-level
agreements (SLAs), have created interest to persisting
streams for archiving/reference, replay, and/or post-facto
introspection.

Sources of continuously-produced information today are
growing in both number and data rates produced. As one
example, consider a mobile operator that needs to process an
increasingly growing rate of call-detail-records per second as
its operations expand in both geographical coverage (number
of base stations) and client base (number of calls initiated per
unit time). Such trends call for scalable streaming platforms
that can keep up with data growth both in terms of capacity
and I/O throughput. Scalable storage systems for such
platforms should be designed, configured, and tuned for the
specific characteristics of continuous data streaming.

From the storage system perspective, the persistence of
continuous data streams exhibits two main distinctive
characteristics. First, streaming workloads consist largely of
sequential writes/appends, with sequential reads taking place
mostly during recovery or in retrospective queries. Whereas
the read use-cases are certainly highly valuable, they are not
expected to be the norm in actual deployments. Second,
streaming workloads feature multiple concurrent writers on
exclusively-owned or shared storage objects. The former
case is expected to be prevalent in actual deployments and
we therefore focus on it in this study.

Continuous data streaming workloads present a number
of challenges for the storage system designer. The storage
system should be optimized for both latency and throughput
since scalable data stream processing systems must handle
both heavy stream traffic and produce results to queries
within given time bounds, typically tens to a few hundreds of
milliseconds. This means that the storage system should be
designed to exhibit a large degree of parallelism for
scalability and also to minimize the eventuality of high-delay
events on the common path. Another important challenge is
to guarantee data stability under different failure
assumptions.

In this paper we focus on scalable storage support for
data stream processing systems for the types of applications
described above. Our contributions are summarized here:

1. Design of a high-performance stream processing engine
I/O architecture that allows simultaneous persistence
and communication of live and past (retrieved from
storage) data streams.

Copyright Notice: 978-1-4244-7153-9/10/$26.00 ©2010 IEEE

2. Implementation of the architecture in the context of an
open-source streaming middleware (Borealis [7]).

3. Evaluation of the scalability of the architecture using an
open-source scalable storage (PVFS2 [18]).

We find that our design and implementation of the
persistence path enables rich functionality with low impact
on the performance properties of the stream processing
system. In summary, our results show that the throughput of
the persistence path when implemented with appropriate
tuning over PVFS2 scales with increasing load. In addition, it
adds a reasonable delay (about 20ms) per processing element
in a well-provisioned system.

Our experience with implementing persistence of
concurrent streams efficiently over a scalable filesystem such
as PVFS2 provides the following observations:

• Synchronous filesystem metadata operations should be
taken off the critical path, and if necessary replaced by
asynchronous operations or removed altogether. Local
filesystem metadata and/or self-identifying stream
records can be leveraged to achieve consistency after a
failure.

• The latency of disk-synchronous (stable) writes can be
reduced by increasing parallelism (stripe width) in file
I/O operations.

• Concurrent streams multiplexed on parallel filesystem
servers produce I/O patterns that are not handled well by
most general-purpose local filesystems. A log-structured
or extent-based local filesystem is best suited for such
patterns.

The remainder of this paper is structured as follows:
First, we relate our work to previous research on stream
processing systems. Then we discuss our persistence
architecture, highlighting the key factors expected to affect
performance, and describe the storage systems used in this
study. Finally we describe our experimental testbed and
present our results on the performance properties of our
system.

II. RELATED WORK
Traditional data streaming systems have offered limited

support for stream persistence in the past. Systems such as
Aurora/Borealis [5] and the Stanford STREAM Data
Manager [7] have considered the need for persisting streams
but have mainly focused on simple database interfaces (for
example, to implement connection points in Aurora/Borealis
[6]) or algorithmic studies of disk buffering policies [8].

Previous work on streaming data persistence was also
motivated by applications such as network monitoring for the
collection of network statistics, troubleshooting, and
forensics. Hyperion [11] is one such system that proposes a
log-based filesystem (LFS)-derived solution called
StreamFS, which optimizes archival, indexing, and online
retrieval of multiple data streams. While related in spirit and
motivation to our work, to the best of our knowledge the

Hyperion approach has not been studied in a continuous-
query streaming environment and has not been extended over
scalable storage platforms.

High-availability (HA) solutions that adapt process-pairs
approaches to data streaming have been proposed in the past.
In the work of Hwang et al. [9] upstream nodes retain tuples
in memory buffers until receiving an explicit
acknowledgment from downstream nodes that they have
checkpointed the associated state and transferred it to a
passive or active backup. This approach may result in tuple
loss if upstream nodes run out of memory buffers while the
recovery of failed downstream nodes takes longer than
expected. It also results in underutilization of the overall
system memory since part of it is dedicated to holding
duplicate checkpoint state.

More recent research work on stream fault-tolerance such
as Kwon et al. [10], have experimented with scalable storage
solutions but have not examined their scalability properties
in the context and detail of this paper. Kwon et al. proposed
a rollback-recovery scheme using asynchronous
checkpointing (implemented in Borealis [5]) with
checkpoints stored in a distributed and replicated filesystem
(their implementation uses HDFS [19]). Their work is related
to ours in its focus on persisting operator state on scalable,
fault-tolerant storage. Their specific focus however is on
scheduling periodic concurrent checkpoints, whereas our
focus is on the more general case of continuously streaming
tuples (which includes checkpoints as a special case).

Another recent related project is that of Hilley and
Ramachandran [12], which focuses on a programming
abstraction that integrates transport, manipulation, and
storage of streaming data. Their work is related to ours in its
goal for seamless integration of different data paths at the
programming-abstraction level through a common API.
However, their system does not focus or optimize for storage
scalability and has not been thoroughly investigated as such.

Streaming-type workloads with large files that are mostly
appended to and read sequentially are also typical of Web
search and Map-Reduce [14] type processing. The
importance of such workloads has led to the design of
systems such as the Google File System (GFS) [15]. GFS has
been optimized for high throughput but makes no provision
for reducing latency (for example writing a 64MB chunk to a
GFS chunkserver can take about a second on a 1Gbps
network). GFS is thus not immediately suitable for
continuous stream processing applications.

Finally, multimedia servers [17] are similar to data
stream storage systems in that they handle sequential access
patterns to the underlying data. Research on multimedia
servers mostly during the 90’s has put emphasis on quality of
service (QoS), disk scheduling, and optimizations of the read
data path. Continuous stream processing applications exhibit
a significant concurrent write activity and thus present a
different set of challenges for the storage system.

III. PERSISTENCE ARCHITECTURE
Data flow in traditional stream processing systems takes

place by communicating tuples produced and consumed by
operators over data paths called streams [5][7]. Each
operator is associated with a distinct pair of input and output
queues. Operators are deployed within stream processing
engines (SPE) on different nodes. An SPE is akin to a virtual
machine specialized to providing runtime support for the
execution of stream operators [6]. The data path between
operators is commonly implemented through communication
between memory buffers over the network. However, in
systems where data loss is not acceptable, SPEs should be
able to persist tuples so that they can be later retrieved from
arbitrary points in time.

A key concept in our scalable stream persistence
architecture is that of a persistent stream object (PSO), a
persistent image of the state of a queue Q over time T (tmost

recent – tleast recent). A queue (and thus a PSO) is associated with
a schema that describes the structure of its tuples– for
example, a telephone call-detail record (CDR). PSOs are
characterized by logical contiguity. Their physical
representation may take different forms, such as a single
storage object or a set of storage objects, and may be hosted
in different types of containers, such as a RAID array or a
distributed filesystem. A PSO is identified through an
assigned ID that reflects the context of the associated queue
Q: its schema, the operator it connects to, the position of this
operator within the overall operator graph, and the
description of the graph.

A. SPE I/O architecture
Each SPE serves multiple streams connecting pairs of
queues, and may therefore be persisting on multiple PSOs.
The data path between operator queues and PSOs extends the
typical SPE structure such as found in the Aurora/Borealis
system [5][6]. Incoming tuples from a stream S are
shepherded by a thread (referred to as the Enqueue thread) to
be enqueued into the SPE for processing by operator(s) that
use S as one of their inputs. The tuples produced by the
operators are placed on an output stream and dequeued by a
separate thread (referred to as the Dequeue thread) and
grouped into Stream Events (SEs). SEs are serialized objects
grouping several tuples for the purpose of efficient
communication. Our detailed description of the SPE I/O data
path starts with the case of failure-free operation:

Failure-free operation: SEs created by the dequeue
thread are first serialized. If the streams they are associated
with are set for persistence, the SEs enter the persist-event
list, otherwise they move directly onto the forward-event list.
A write operation to storage is initiated using an
asynchronous API [13]. This write is typically stable; that is,
the write is not complete unless the I/O has been flushed to
disk— however the architecture can accommodate different
semantics and tradeoffs. The asynchronous I/O operations
are handled by a state machine in an event loop. For
parallelism, we maintain a configurable window of N
concurrently outstanding I/Os. Once a completion of a write
I/O is posted by the storage system we first update a per-

stream index, and then move the persisted event data
structure to the forward-event list. Subsequently a network
send operation is initiated. The SE remains there until
successfully sent out over the network.

Operation under failure: When a downstream SPE
node fails, all streams connected to queues on that node
disconnect and no outgoing network communication takes
place on those streams until reconnection (other streams
however are not affected). SEs produced by local operators
are still persisted as described during failure-free operation.
However, in this case as soon as such SEs are stable they are
deleted from memory. Other SEs belonging to still-
connected streams proceed to the forward-event list as
described during failure-free operation.

PSO indexing: As PSOs grow by appending serialized
SEs to them, our I/O architecture maintains per-PSO indices
mapping a given tuple identifier (a timestamp) into a
serialized SE within a PSO. In the case of a filesystem
implementation, the index points to a file offset where the SE
containing the tuple requested is located. In our current
prototype the PSO index is implemented using an Oracle
Berkeley DB database.

B. Storage system used in this study
In this work we use the PVFS2 [18] clustered parallel

filesystem. PVFS2 stripes files over a cluster of storage
servers offering parallel I/O paths for scalable I/O
performance. PVFS2 decouples metadata from data accesses,
an approach first popularized by the NASD project [16]. One
or more metadata servers are responsible for informing
clients of the location of data in the storage servers but are
not involved in the actual I/O operation. PVFS2 does not
offer client-side caching, a feature that fits well workloads
such as streaming with little or no data re-use.

In Figure 1 we depict a (one of possibly several) SPE
performing I/O asynchronously. Possible metadata updates
during I/O are handled by the metadata server. Each storage
(data) node maintains parts of several PSOs, each part
identified by a pair (X, A) that stands for “corresponding to
SPE X stored on data node A”. Data layout to storage servers
in PVFS2 is done in a round-robin manner independent of
their actual load. Despite the simplicity of this policy it
should perform reasonably well for sequential stream
accesses.

We next focus on four important factors affecting
performance.

Metadata updates. In addition to I/O operations, a write
operation may trigger a metadata update as a result of a
change in the file size and/or the time of last modification or
access. A metadata update may not be needed if overwriting
a pre-existing file and maintenance of the last-modified or
last-accessed timestamps has been disabled. However in
cases where metadata updates are necessary, there are two
implementation choices: The first is to synchronously flush
the metadata update to disk ensuring durability. The second
choice is to enable write-back caching at the metadata server,
which should reduce durability but improve performance.

Data stream workloads make the latter a viable alternative
with the use of self-identifying tuples and when each data
node runs a local filesystem that maintains its own metadata
about local files. In such case, recovery of the file size or the
time of last modification or access is possible by examination
of the file contents and recovery of local filesystem metadata
in storage nodes. For this reason we can safely use
asynchronous metadata updates in our experiments.

Data stability: For fault-tolerance, an SPE requires that
tuples are stably written to disk prior to forwarding them on
the network. Stable writes involve the disks on each I/O
operation and are thus expected to affect response time.
Throughput is expected to be affected to the degree of
available parallelism (e.g., number of servers, number of
writing threads per server, and number of disks per server
involved) to avoid blocking on any such operation.

Local filesystem: Concurrent writes from multiple SPEs
interfere at storage servers. Within each storage server, write
requests targeting different local files may reduce storage
node efficiency if the local filesystem cannot handle such
patterns very well. Log-based filesystems (LFS) or extent-
based filesystems are particularly suitable for such patterns.
In many cases though, distributed file systems use general-
purpose filesystems that are not optimized for the concurrent
sequential writes to large files typical of data streaming
workloads.

Block size (S). Using a large S improves the efficiency of
data transfers, which is one of the reasons GFS uses a 64MB
chunk. However a large S is not advantageous in a latency-
sensitive environment due to the high transfer time. In our
experimental evaluation we use a moderate S value of
256KB.

IV. EXPERIMENTAL TESTBED
Our experimental setup consists of a 16-node cluster of

dual-CPU AMD 244 servers with 2GB DRAM running
Linux 2.6.18 and connected through a 1Gbps Ethernet switch
using Jumbo (9000 byte) frames. In this cluster we deployed
the Borealis software release (as of summer 2008) and
PVFS2 version 2.8.1. For selected experiments requiring
more powerful servers we used dual quad-core (total of 8

cores) AMD Opteron 2354 with 4GB of DRAM. Unless
explicitly mentioned otherwise we use the dual-CPU
machines in our experiments.

In our experimental setup half of the PVFS2 nodes were
configured as file servers—one of them doubling as metadata
server— and the rest as clients. Each node of each filesystem
was provisioned with a dedicated logical volume comprising
four 40GB partitions of SATA disks in a RAID-0
configuration with a 64KB stripe unit. PVFS2 was setup to
stripe files using a 256KB unit, a value that was chosen to
equal a full RAID stripe. The total capacity of the parallel
filesystem in the 8-server setup was about 1.1TB. Each file
server node used an underlying Linux filesystem of type ext3
or xfs where noted. By default, PVFS2 uses a write-back
data cache on its servers. In our experiments we modified the
default policy to use synchronous writes (unless explicitly
mentioned otherwise).

V. RESULTS
In this section we report results comparing Borealis

performance with and without persistence over PVFS2. We
use performance without the persistence path as a baseline.

A. Baseline performance: Single node
Table 1 describes streaming throughput in a Borealis

setup with a single SPE, hosting a filter operator connected
to a data source (sender) and a data sink (receiver) node. The
filter operator inspects a fixed-size (integer) field in each
tuple and forwards it along the operator’s single output
stream. We chose a simple operator setup to focus on I/O
performance rather than computational behavior of the
streaming system. Throughput is in MB/sec and the tuple
size varies from 256 bytes to 4KB.

Batch size

Tuple size 1 16 32 64

256 5 MB/sec 15 MB/sec 13 MB/sec 14 MB/sec

1024 14 MB/sec 38 MB/sec 35 MB/sec 34 MB/sec

4096 31 MB/sec 63 MB/sec 52 MB/sec 45 MB/sec

Table 1 Baseline measurements with dual-core nodes.

An important Borealis parameter is the batching factor at
the source, which is the amount of tuples it injects into
Borealis with each network I/O. The batching factor refers to
the source node and does not constrain the Borealis servers
into how they group tuples in performing I/O operations. We
experimented with batching factors of 1, 16, 32 and 64
tuples. Borealis servers use an adaptive grouping factor,
which is inversely proportional to tuple size.

In Table 1 we observe that Borealis performance
improves with increasing tuple size due to gradually reduced
per-tuple CPU overhead. The figure also indicates that tuple
batching helps performance to a certain degree. For a
batching factor of 16 and tuple size 4KB we observe a
throughput of 63MB/sec which exceeds no-batching
performance by a factor of two. This represents the highest

Figure 1: Model of stream persistence over PVFS2.

throughput rate we have achieved using the dual-core server
setup. All CPUs are fully saturated in all measurements taken
in this benchmark.

B. Storage performance: Single node
We next evaluate the performance of the single SPE node

of the previous setup with the persistence path enabled. We
use two storage configurations: A single PVFS2 server
performing synchronous writes (Pvfs2-sync) and one that
does not (Pvfs2-async). We also evaluate a configuration
(Str_Code) that includes the persistence path but omits calls
into the PVFS2 client. Finally, we compare the above to
baseline Borealis measurements.

We use a batching factor of 16 to target the best
performing configuration of the previous experiment. We
have empirically determined that Borealis performs I/O
(network or storage) at steady-state using fixed-size blocks
of 184 tuples for the tuple sizes we have considered. The
Borealis I/O size is thus 64KB, 184KB, and 736KB for tuple
sizes 256 bytes, 1KB, and 4KB, respectively.

In Figure 2 we observe that the differences between
configurations become progressively more pronounced with
increasing tuple size as the system becomes more I/O-bound.
At 4KB tuple size, we observe that Pvfs2-async performance
is about half that of non-persisting Borealis due to splitting
the outgoing link bandwidth between persistence and regular
communication traffic.

Figure 2 Storage performance with a single Borealis node.

Synchronous (stable) writes reduce PVFS2 performance
by about 8MB/s or 15% compared to asynchronous writes.
The majority of this overhead seems to be coming from the
file/storage client itself as the Str_Code configuration
indicates. The CPU of the SPE node is fully saturated in all
cases in this experiment. Finally, measurements of I/O
response time in the Pvfs2-sync setup report an average of
20ms.

To evaluate the impact of a faster SPE node we repeat
this experiment for the Pvfs2-sync, and baseline
configurations with 4KB tuple size and batching factor 16 on
the 8-core server. In Table 2 we observe that all
configurations benefit from running the SPE on a faster
CPU. However, PVFS2 seems to receive a proportionally
higher benefit improving its performance by a factor of two.

We also observe that the PVFS2 configuration achieves more
than half the throughput of the baseline configuration despite
moving every tuple twice over the outgoing link. The reason
for this is the additional parallelism within the PVFS2 client
which can use the spare CPU cores (which the single
network worker thread itself cannot use) to utilize a higher
fraction of the outgoing link bandwidth.

Borealis PVFS2

2-core 63 MB/sec 28 MB/sec

8-core 75 MB/sec 50 MB/sec

Table 2 Baseline storage measurements with 8-core nodes.

C. Streaming and Storage Scalability
In this experiment we vary the number of Borealis SPE

nodes and the number of PVFS2 storage servers performing
synchronous/stable writes. Each Borealis SPE node is
hosting a filter operator (similar to previous experiments)
and all operators are connected (input to output) via a single
stream.

Figure 3 Scalability of Borealis over PVFS2.

Figure 3 depicts streaming performance with and without

persistence when the Borealis and PVFS2 nodes vary from
one to eight. We use a tuple size of 4KB and batch size of
16. An initial observation in the case of non-persisting
Borealis nodes is that increasing their number from 1 to 8
results in a throughput drop from 62MB/s to about 52MB/s.
We attribute this non-storage-related drop to imbalances in
resource usage across nodes over the course of experiments
in the chain of SPEs.

For a single Borealis SPE we observe that (in accordance
with Table 1) throughput is less that half of what is
achievable without persistence and improves to exactly half
with larger PVFS2 setups. The reason behind the
improvement is better parallelization/overlap of the stable
write operations. Increasing the load (number of Borealis
SPE nodes) we observe a gradual drop in throughput that is
partly attributable to the Borealis issues described earlier and
partly (where the drop is steeper) to overload in smaller
PVFS2 setups. In the case of 8 Borealis SPEs on a single

PVFS2 server we observe a streaming throughput of about
10 MB/s or a PVFS2 server write-throughput of about 80
MB/s. Given that the server is not limited by either its
network link or its CPU and the Borealis SPE nodes are not
CPU-bound, we believe that in this case we are limited by
the efficiency of the PVFS2 server local filesystem under
many concurrent writers.

Figure 4 Aggregate throughput of Borealis over PVFS2.

Figure 4 provides a view of the aggregate throughput
(calculated as the number of Borealis SPE nodes multiplied
by SPE throughput towards the PVFS2 system) with
increasing Borealis nodes. The figure shows that
performance scales with increasing load. The minimum
number of PVFS2 nodes needed to achieve the observed
aggregate throughput with 1, 2, 4, 8 Borealis nodes is 8.

VI. DISCUSSION AND CONCLUSIONS
In this paper we have shown that stream persistence can

be achieved in a scalable manner using a fully asynchronous
event-driven SPE I/O architecture layered over an
appropriately tuned parallel filesystem. This persistence path
comes with an associated overhead: It requires the use of
CPU and network bandwidth (as tuples to be communicated
downstream are duplicated on the storage path). However,
we have shown that the CPU overhead need not be high and
it can be assigned to spare cores in multi-core CPUs; in
addition, the network bandwidth may be needed mostly
when there is spare bandwidth available, for example when
downstream operators are overloaded (and thus cannot
communicate at full speed) or have failed.

In our evaluation we have considered scenarios of several
SPE nodes persisting tuples at full speed. In a practical
scenario however, persistence may be required only at
selected tuple entry points, which are edge servers that inject
tuples into SPE nodes. Entry points are I/O-intensive and
thus better candidates than SPEs for serving as persistence
gateways. Although we exhibited our persistence path
implementation in the context of the Borealis system, our
SPE I/O architecture is more general and can be applied to
other data stream processing systems.

VII. ACKNOWLEDGMENTS
We thankfully acknowledge the support of the European

FP7-ICT program through the STREAM project (STREP
216181).

REFERENCES
[1] Christopher Drew, “Military is Awash in Data from Drones”, New

York Times, January 10, 2010.
[2] StreamBase, http://www.streambase.com
[3] IBM Press Report, “IBM Ushers In Era Of Stream Computing”,

http://www-03.ibm.com/press/us/en/pressrelease/27508.wss
[4] Ashlee Vance, “IBM Unveils Real-Time Software to Find Trends in

Vast Data Sets”, New York Times, May 20, 2009.
[5] U. Cetintemel, D. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska,

M. Cherniack, J. Hwang, W. Lindner, S. Madden, A. Maskey, A.
Rasin, E. Ryvkina, M. Stonebraker, N. Tatbul, Y. Xing, S. Zdonik;
“The Aurora and Borealis Stream Processing Engines”, in Data
Stream Management: Processing High-Speed Data Streams, M.
Garofalakis, J. Gehrke, R. Rastogi (editors), Springer-Verlag, July
2006.

[6] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, M. Stonebraker, N. Tatbul, S. Zdonik; “Aurora: A New Model
and Architecture for Data Stream Management, in Proceedings of the
VLDB Journal (2003).

[7] A. Arasu et al; “STREAM: The Stanford Data Stream Management
System”, in Data Stream Management: Processing High-Speed Data
Streams, M. Garofalakis, J. Gehrke, R. Rastogi (editors), Springer-
Verlag, July 2006.

[8] R. Motwani, D. Thomas, “Caching Queues in Memory Buffers”, in
Proceedings of the 15th Annual ACM-SIAM symposium on Discrete
algorithms, New Orleans, LA, 2004.

[9] J.-H. Hwang, M. Balazinka, A. Rasin, U. Cetintemel, M. Stonebraker,
S. Zdonik, “High-Availability Algorithms for Distributed Stream
Processing”, in Proceedings of 21st International Conference on Data
Engineering (ICDE’05), 5-8 April 2005, Tokyo, Japan.

[10] S. Kwon, M. Balazinka, A. Greenberg, “Fault-tolerant stream
processing using a distributed, replicated filesystem”, in Proceedings
of the VLDB Endowment (1): 574-585, 2008.

[11] P. Desnoyers, P. Shenoy, “Hyperion: High Volume Stream Archival
for Retrospective Querying”, in Proceedings of USENIX Annual
Technical Conference, Santa Clara, CA, 2007.

[12] D. Hilley, U. Ramachandran, “Persistent Temporal Streams”, in
Proceedings of ACM Middleware, 2009.

[13] Kernel asynchronous I/O for Linux,
http://lse.sourceforge.net/io/aio.html

[14] J. Dean, S. Ghemawat, “Map-Reduce: Simplified Data Processing on
Large Clusters”, in Proceedings of OSDI'04: Sixth Symposium on
Operating System Design and Implementation, San Francisco, CA,
December, 2004.

[15] S. Ghemawat, H. Gobioff, S. T. Leung, “The Google File System”, in
Proceedings of the 19th ACM Symposium on Operating Systems
Principles, Lake George, NY, October, 2003.

[16] G. Gibson et al, “A Cost-Effective High-Bandwidth Storage
Architecture”, in Proceedings of the 8th Conference on Archiectural
Support fro Programming Languages and Operating Systems
(ASPLOS), San Jose, CA, October 1998.

[17] D. Gemmell, H. Vin, D. Kandlur, P. Rangan, “Multimedia Storage
Servers: A Tutorial and Survey”, in IEEE Computer, vol. 28, pp. 40-
49, 1995.

[18] W. Ligon, R. Ross, “Overview of the Parallel Virtual File System”, in
Proceedings of Extreme Linux Workshop (1999).

[19] Apache Hadoop Project, “The Hadoop Distributed File System:
Architecture and Design”, http://hadoop.apache.org, 2007.

