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Abstract

Storage clusters try to transfer the idea of cluster com-
puting into the storage domain and to scale capacity and
performance by simply adding new cluster components.
This paper presents analytical considerations on the scal-
ability of storage clusters and presents a storage cluster
architecture based on peer-to-peer computing that is able
to scale up to hundreds of servers and clients. The result-
ing storage cluster environment has been successfully im-
plemented and tested on a Linux based HPC-cluster. The
measurement results presented in this paper demonstrate
the feasibility and scalability of this architecture.

1. Introduction

Cluster-based storage tries to transfer the idea of clus-
ter computing into the storage domain. A storage cluster is
based on a set of storage appliances, called storage bricks,
that work together closely and can be seen, from the out-
side, as a single, huge and fast storage system. The storage
bricks are managed by a storage cluster middleware that is
implemented as a software system managing the distributed
state information about the storage cluster [13].

A major distinction between storage clusters and con-
ventional storage architectures is that storage bricks are
assembled based on commodity server architectures, en-
abling cost-savings compared to dedicated architectures
[3]. Therefore each storage brick does not only provide
storage capacity, but also computing and communication
power. The computing capabilities enable a storage brick
to contain a software management stack and to act as a stor-
age appliance. The software stack inside a storage brick
is responsible for a seamless integration of the brick into
the cluster environment. Integrating a new storage brick
therefore only involves the assignment to a storage resource
pool, all other administration tasks, like authentication or
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rights management, are handled by the middleware. A
characteristic element of storage clusters is that adding new
storage bricks does not only increase storage capacity, but
also the performance of the entire cluster.

Storage bricks can either use directly attached storage
or networked storage as persistent storage. In the first case,
only an interconnection infrastructure between the nodes
of the storage cluster and to the client systems is necessary
to provide scalable storage. In the second case, the bricks
have to be connected to the networked storage systems over
a storage area network, inducing additional costs and com-
plexity, but also enabling the bricks to share storage devices
without communication between the bricks.

The idea of a storage cluster as a collection of smaller
components is closely related to storage virtualization and
has been implemented first in the Petal prototype [10]. The
main task of a storage cluster is to hide the complexity of
the underlying storage systems by using a block-based stor-
age virtualization environment or a distributed file system
[15] [12] [7]. An example for an academic storage clus-
ter is Ursa Minor, which provides access to objects instead
of files or blocks and which is able to change data encod-
ing and therefore performance and reliability of data ob-
jects based on attributes and access patterns [1]. The aim
of the Federated Array of Bricks (FAB) is to deliver enter-
prise properties from a set of storage bricks at a fraction of
the costs of an enterprise storage array [14]. The V:Drive
project is based on randomized data distribution schemes,
which are able to evenly spread data and accesses among
all participating bricks and offer fast reorganization in case
of failures or the integration of new bricks [5].

Storage Grids often use Ethernet as interconnection
technology to the clients and between the storage bricks. In
this paper we will focus on Internet SCSI (iSCSI) as inter-
connect protocol, which has been developed as an exten-
sion of the SCSI protocol environment for TCP/IP based
networks [16]. Additional block level storage protocols
over Ethernet are HyperSCSI, NBD, and ENBD [17][2]. It
is of course also possible to use high speed networks like
Infiniband or Myrinet as interconnect between the bricks or
to the clients.
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Inside this paper we investigate the sub-class of storage
clusters where storage bricks use directly attached storage
devices as persistent storage with a block-level interface.
Furthermore, we assume that clients are not allowed to
load proprietary drivers to support access to these devices.
This is a key requirement for building open systems RAID-
System, which are offered by vendors like Equallogic or
LeftHand Networks [6].

The requirements concerning this storage cluster ar-
chitecture differ significantly from approaches like Petal,
where clients load an additional module that gives hints
about the data location, and it differs from Ursa Minor that
is based on the concept of object storage devices, where
accessing clients also know where to access data. The ar-
chitecture of the FAB-project is closely related to the ar-
chitecture used inside this paper, but the publications do
not consider the influence of the interconnection network
between the peers on scalability.

The performance of this sub-class of storage clusters
mainly depends on two different aspects: The ability to
evenly spread data blocks and requests to the data among
the storage bricks and the communication overhead be-
tween the peers. The communication between the peers
is especially important, if the hard disks are as fast as or
even faster then the communication links. This can occur
if a set of disks inside each storage brick is used as internal
RAID environment and the access pattern is sequential or
if solid-state disks are used as persistent storage. Commu-
nication between peers is always necessary, if a peer needs
to access data that is stored on another peer.

After giving a short introduction into the system archi-
tecture in section 2, we analyze the influence of inter-node
communication on the scalability of the network in section
3. The calculations are based on the assumption that the
interconnect is the bottleneck of the network and we show
that the internode-communication has got a significant in-
fluence on the performance of a storage cluster.

The analytical results of this paper are complemented
by measurement results for scalable storage clusters in sec-
tion 4. The measurements have been performed on a high
performance computing (HPC) cluster environment under
Linux. Based on a storage cluster architecture that has
been composed from publicly available components and
the cluster volume manager V:Drive we show that the an-
alytical results fit very well with reality. We will present
the measurement results for up to 24 cluster nodes and 24
client nodes including data replication schemes.

2. System Architecture

The system architecture is based on three major com-
ponents: iSCSI enterprise target driver for Linux, iSCSI
initiator driver for Linux and the cluster volume manger

V:Drive for Linux. The iSCSI Enterprise Target driver is
used as block level interface to client computers and as in-
terface to other storage brick nodes, which have to directly
access physical disks on their peer nodes. The iSCSI initia-
tor, which is based on the Cisco implementation for Linux
and which is delivered as standard iSCSI initiator for Red-
Hat AS 4.0, is used to access data on peer nodes.

The cluster volume manager V:Drive groups physical
disks in storage pools. These storage pools are not ac-
cessed directly, but by the abstract concept of virtual vol-
umes which are exported to the accessing client computers
as iSCSI volumes. Each virtual volume can be concurrently
accessed by an arbitrary number of client computers.

The capacity of each disk in a storage pool is partitioned
into minimum sized units of contiguous data blocks, so
called extents. The typical size of an extent varies between
4 MByte and 512 MByte. Inside this paper, we always
use an extent size of 4 MByte. The extents are distributed
among the storage devices according to a randomized data
distribution strategy that guarantees an almost optimal dis-
tribution of the data blocks and data accesses across all par-
ticipating disks in a storage pool. If storage bricks join or
leave the storage cluster, the data is redistributed according
to the randomized data distribution strategy. The number of
extents that have to be redistributed after any change of the
infrastructure is provable minimal [5]. Data is distributed
over all physical disks of a storage pool. If data is repli-
cated according to a RAID 1 scheme, the virtual volumes
should be from different storage pools. Then, data con-
sistency, synchronization, and recovery of a mirror inside
V:Drive are fully cluster aware [4]. This is not (yet) the
case for RAID 5, where the parity generation is not cluster
aware. Nevertheless, we also use mirroring inside this pa-
per in a way that all virtual volumes of a mirror are placed
on the same storage pool, leading to a decreased reliability.

The core component of V:Drive is a clustered metadata
appliance that stores and distributes information about the
storage environment. This information includes the physi-
cal volumes, the storage pools and virtual volumes, and the
set of extents which are already assigned to the different
virtual volumes. Inside the storage cluster, each brick node
is running a small driver module that presents its virtual
volumes to the host operating system.

3. Communication Overhead between Peers

Scalability inside a storage cluster is bounded by a num-
ber of factors. Important aspects concerning the scalability
are the ability of the data distribution to balance data and
requests among the peers and the communication overhead
between the peers that is induced by the exchange of data
and information between the peers and the underlying net-
work technology. In this section we will focus on commu-
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nication between peers and we will assume that this kind of
communication is only necessary to exchange data blocks
and that only small amounts of metadata have to be ex-
changed between peers. Furthermore we will assume in
a first step that the underlying data distribution scheme is
able to evenly distribute data among the peers, so that all
peers are able to participate according to their storage ca-
pacity and performance. An even distribution of accesses
can either be achieved by striping the data over the peers
or by using a distributed hash function that randomly dis-
tributes data over the peers [9] [5] [8].

Communication between two peers is necessary if a peer
needs to read or write data stored on another peer. Figure
1 depicts a typical read inside a storage cluster. A client is
connected to one storage brick inside the cluster that acts
as iSCSI target for this client. This storage brick will be
called master peer for this client in the following. In a first
step, the client sends a read request to its master peer. If the
master peer does not store the corresponding data block, it
has to forward the request to a peer in step 2. The peer
reads the data block from its cache or disk subsystem and
returns the data block in step 3 to the master peer. In a last
step, the master peer sends the resulting data block to the
client.

This process does not only involve the forwarding of
control messages between the peers, but also the movement
of bulk data from the peer containing the data to the mas-
ter peer. This movement seems to be unnecessary, because
this data block could be (theoretically) sent directly from
the data source to the client. Unfortunately, this is not pos-
sible for iSCSI and other protocols, which are based on
the TCP/IP protocol. iSCSI requires for each communica-
tion to build up a socket between an iSCSI initiator and an
iSCSI target. If the iSCSI- or TCP/IP-stack inside the client
can not be adapted to the demands of the storage cluster, it
is not possible to transparently move the target endpoint of
the socket connection without the use of an intelligent in-
termediate switch or server [11].

������� ����	
��������
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Figure 1. Typical communication pattern.

3.1. Analyzing the Expected Scalability

In a first step, we will analyze the expected scalability
of storage clusters. We will assume that the performance
is restricted by the interconnection network between the
peers and from the peers of the storage to the clients. This
assumption is valid for sequential access patterns as well
as for random access patterns on Flash RAM-based hard
disks. Furthermore, we will assume that each client is al-
ways connected with exactly one peer and that the clients
are evenly distributed about the peers.

Assuming a fixed connection between a client and one
storage brick inside the storage cluster and a striped or ran-
domized data distribution scheme, the probability that an
access can not directly be served by the master peer of a
client growth linearly with the size of the storage cluster.
If the cluster contains n nodes, only 1/n-th of the requests
could be served directly from a master peer. The remaining
requests have to be forwarded from the master peer to peers
containing the correct information.

In the following we will analyze the impact of this be-
havior on the scalability of the storage cluster. The network
bandwidth that can be delivered from a single node system
to its clients will be denoted by b. In the optimal case, the
network bandwidth xn delivered from one storage brick in
a storage cluster with n nodes is equal to b and the total
bandwidth delivered by n peers is Btotal = n · xn = n ·b. In
a real environment, we expect a behavior of type

B = f (n) ·a ·b (1)

as first order approximation, where f (n) is a function
expressing the scalability depending on the number of
nodes n and a denotes a constant parallelization overhead
(nearly) independent of n. In the investigated case, the par-
allelization overhead a is e.g. induced by a constant num-
ber of additional communication rounds between the peers
exchanging requests.

Inside this extended abstract, we will consider the scal-
ability of m-out-of-n codes. These codes have the advan-
tage that the required redundancy to store data can become
much smaller than for pure data replication; e.g. parity
RAID with 4 data blocks and one parity block has an over-
head of only 25%, compared with an overhead of 100%
for mirroring with the same degree of data protection. This
increase in storage efficiency normally includes a decrease
in performance. The change of a sub-block requires that
at least two sub-blocks are being read and two sub-blocks
are being written to keep the parity block consistent. In the
following, we will denote (due to consistency reasons in-
side this paper) the parameter n of the code as q and the
parameter m as w.

We will show that this increase in storage efficiency can
also be used to decrease network load if the environment

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:47:22 UTC from IEEE Xplore.  Restrictions apply. 



is able to write full stripes. In this case, the redundancy
blocks can be calculated without reading data from stor-
age and without straining network bandwidth. It is possi-
ble to calculate the usable bandwidth for writing data for
full-duplex connections as:

b = max

(

xn +
w
q
·

n−1
n

· xn,
w
q
·

n−1
n

· xn

)

⇒ xn =
q ·n

(q + w) ·n−w
·b (2)

where the first term of the max-function depicts incom-
ing communication and the second term outgoing commu-
nication from a storage node. Therefore, the overall band-
width scales according to

Btotal =
q ·n2

·a ·b
(q + w) ·n−w

≈
q ·n ·a ·b
(q + w)

(3)

If q is equal to w, the term describes full-duplex writes
without replication. If w = k ·q, the scaling becomes equiv-
alent to the scaling of a k-fold replication scheme.

4. Measurements

The aim of our measurements is to experimentally eval-
uate the influence of interconnection technologies on the
scalability of a storage cluster which is using direct at-
tached storage devices. The measurements have been per-
formed on a Linux computing cluster, so it has been possi-
ble to scale up to a large number of storage bricks.

To outline the influence of interconnects on scalability,
we have used internal RAM disks to be able to abstract
from the influence of the used storage media. To overcome
resulting caching effects inside the client computers, we
have developed a virtual RAM disk that is able to consis-
tently store a defined part of the RAM disk address space in
memory and just returns random blocks for the rest. There-
fore it becomes possible to write a consistent boot block on
an infinitely large RAM disk.

For each test, the adaption factor a has been calculated
to minimize the average quadratic deviation from the ex-
pected results. If a test consist of p test runs for different
numbers of nodes, xi denotes the measured bandwidth for
the i-th test run and xi denotes the expected bandwidth for
the same test, a is chosen in a way that it minimizes

p

å
i=1

(xi −a ·xi)
2 (4)

4.1. Test Environment

To test the scalability of the storage cluster, up to 24
storage brick nodes and up to 24 clients, each equipped
with two 1 GHz Pentium 3 CPUs and 512 MB RAM, have
been used. Each of the storage brick nodes has exported
a 1 TByte virtual RAM disk via iSCSI to all other nodes
inside the storage cluster. Each server has been running
RedHat Enterprise Linux AS 4 with a 2.6.9.42 kernel. The
nodes have been connected by a 100 MBit/s Ethernet Cisco
Catalyst 5509 switch that has been equipped with six WS-
X5234-RJ45 24 node expansion modules. The backplane
of the switch contains three busses, where each bus has a
maximum throughput of 1.2 GBit/s. The maximum mea-
sured performance of each bus segment is 900 MBit/s that
can only be observed for optimized communication pat-
terns. Even if the cluster is based on elder technology, the
resulting effects also apply to recent storage clusters.

For the scalability tests, each client has been connected
to one node of the storage grid. The physical (RAM) disks
of the brick nodes have been grouped in one single stor-
age pool. For each client node we have created two virtual
volumes from the storage pool which have been exported
to the client node via iSCSI. The data of each virtual vol-
ume has been scattered over all physical (RAM) disks of
the storage pool. For iSCSI-target mode, we have used the
iSCSI Enterprise Target version 0.4.12 driver. For iSCSI-
initiator mode, we have used the iSCSI-initiator module
that has been deployed with RedHat AS 4 and which is
based on a Linux-iSCSI(sfnet)-driver.

IOmeter has been used as benchmarking environment. It
consists of a set of agents for Linux, called dynamos, which
are working as load generator on the client computers. The
dynamos are managed by a server program on a Microsoft
Windows PC. If not mentioned otherwise, the maximum
number of outstanding IOs for each client has been set to
16, the access size has been set to 32 KByte, and the per-
formance has been measured for 5 minutes for sequential
writes after a ramp-up time of 30 seconds.

4.2. Measurement Results

Local Performance Many parallel solutions are able to
scale performance in the number of nodes of the environ-
ment from 2 to n nodes, but have to cope with a significant
parallelization overhead. This parallelization overhead of-
ten leads to a performance decrease for smaller environ-
ments compared to a local solution. Besides the examined
overhead of the inter-node communication, this overhead
can be induced in our case e.g. by the virtualization layer
or network protocol stack.

In this section, measurement results for the performance
of a local solution will be presented, where both client and
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server are on the same computer system. Furthermore we
investigate the influence of the virtualization layer and the
iSCSI-communication between one server and one client.
In all cases, two workers are accessing two volumes.

In the first case, the dynamo agents directly access the
virtual RAM disk on the same node. The maximum perfor-
mance of the RAM disk is a sequential read throughput of
360 MByte/s for 32 KByte blocks and it can deliver up to
11,429 32 KByte random I/Os per second. The sequential
write performance drops to 136 MByte/s. Both CPUs are
under significant load. The situation changes slightly when
a virtualization environment is put between the RAM disk
and the IOMeter agent. The sequential write throughput
drops to 120 MByte/s and the IO-rate drops by the factor
3/4. The reason is based on communication with the meta-
data appliance, which imposes additional delays for all first
accesses to new regions.

In the next case, the server has been connected via iSCSI
with a client computer. To directly measure the influence
of the iSCSI communication between two computers, the
server exports two virtual disk that only access the RAM
disk. The throughput for sequential write accesses is 10.02
MByte/s for a 100 MBit/s Ethernet connection. The ran-
dom I/O write performance is 313 I/Os per second or 9.78
MByte/s is nearly as fast as the sequential throughput. The
last test measures the case when the RAM disk is exported
as two virtual volumes. The sequential write performance
drops slightly to 9,1 MByte/s, while the random I/O write
performance decreases to 195 write I/Os. The decrease is
based on the communication with the metadata server.

Scalability using RAID 1 The next test series is based
on virtual RAM disks again and investigates the behavior
of storage clusters applying data replication (additional test
results, e.g. without data replication or for real disks are
given in the full version of this paper). The RAM disks of
all storage bricks are grouped inside a single storage pool.
Each virtual disk derived from the storage pool has got a ca-
pacity of 40 GByte and two virtual volumes are combined
to one mirror volume. Each client computer is again con-
nected with exactly one grid node and imports two mirror
volumes. Therefore, 96 virtual volumes are set up for the
24 node test. Writes are send to both virtual volumes of a
mirror volume, reads are performed by an arbitrary of both
(see also [4]).

The measured performance for write tests only increases
according to Equation 3 by a factor 1/3. After scaling well
from two nodes to 16 nodes, the performance for 24 stor-
age nodes lacks behind the expected performance. This
is based on the deployed switch. The measured perfor-
mance of 42 MByte/s produces additional, internal traffic
of 56 MByte/s between the three leaf boards, saturating the
backplane with an overall traffic of 790 MBit/s. The ex-
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Figure 2. Scalability of mirrored RAM disks.
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Figure 3. Scalability of RAID 5.

pected performance of 52 MByte/s would already produce
an overall traffic of 970 MBit/s on the backplane. There-
fore, it is important to consider the internal traffic between
the peers that can become much bigger than the external
traffic. The factor a has been set to 0.69 to minimize the
error, neglecting the test for 24 storage nodes1.

Scalability of RAID 5 The theoretical assumptions lead-
ing to Equation 3 promise that the network load can be
significantly reduced, compared to a k-replication of the
data, by using m-out-of-n codes. Based on a single server
write throughput of 9 MByte/s, this would theoretically
lead to a throughput of up to 100 MByte/s for a 24 nodes
4-out-of-5 storage cluster, compared to a theoretical max-
imum throughput of 73 MByte/s for a 24 nodes cluster
that mirrors data. Besides this expectations, the measured
write performance lags behind the expected performance
and even behind the measured performance for Mirroring.

The reason is the special handling of request inside
the iSCSI target driver inside the storage nodes. Each 32
KByte write request is split into 4 KByte requests which are
successively handled by the underlying page cache layer
and block layer. Therefore, the first block of each stripe is
handled as a new stripe and requires to fetch the remain-
ing blocks of the stripe from the other peers to calculate the
new parity block, leading to additional 32 KByte of read
requests. Furthermore, 40 KByte of data have to be written

1The used iSCSI configuration producing the test results has not been
optimized and better results can be achieved which would lead to a higher
a-value.
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to the peers. This leads to the following calculation for the
used 4-out-of-5 code:

b = max

(

13 ·n−9
4 ·n

· xn,
9 ·n−9

4 ·n
xn

)

⇒ xn =
4 ·n

13 ·n−9
·b (5)

and therefore the environment scales according to

Btotal =
4 ·n2

·a ·b
13 ·n−9

≈
4 ·n ·a ·b

13
(6)

Using an adaption constant a of 0.56 leads to a nearly
perfect approximation of the measured behavior. Again,
the 24 node test requires too much communication to be
able to scale according to the predicted results.

5. Conclusion

Storage bricks offer an interesting opportunity to scale
small storage appliances, so-called storage bricks, to large-
scale enterprise storage systems. As shown inside this pa-
per, the interconnects can easily become the limiting per-
formance factor for sequential accesses, especially if data
has to be replicated. Nevertheless, storage clusters are re-
ally able to scale performance in the number of nodes. This
performance increase is not only based on a larger number
of spindles, but also on more communication interfaces and
larger, aggregated caches. Summarized, storage clusters
are able to scale performance and capacity while deliver-
ing a high degree of reliability and are able to overcome
limitations imposed by centralized storage architectures.
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