SGFS: Secure, Flexible, and Policy-based
Global File Sharing

Vishal Kher
Eric Seppanen
Cory Leach
Yongdae Kim
{vkher,seppanen,leach,kyd} (@cs.umn.edu

M University of Minnesota 3
- DISC

a

Motivation for Network attached Intelligent

starage Devices (NISD)

Autonomous
= Utilize available CPU power to perform operations
= Security, block mgmt, search/indexing, remote query execution

Improved data sharing

= Devices can manage meta-data; systems need to handle only
naming and location management

Improved Scalability

= (Clients can directly interact with the devices

Cost-constrained embedded environment

= (CPU and mem. resources not as powerful as a typical file
server

Challenges for Cross-domain Sharing

How can my group

securely access Alice’s
=~ file system ?

How can I
mount my

Carol. Visitor@IBM

0 Two main challenges

Allowing legitimate users to share files across domains without
administrative interference

Providing consistent file system 1mage irrespective client
machine

Overall Goal

0 Developing new mechanisms to allow cross-domain file
sharing in the presence of NISD

= Secure
= Efficient

Design Goals

O Minimal administrative interference

= User should be able to grant access to other users; sharing
should not be restricted only to “joined “ domains

Q@ Global file system

= Users should be able to access files the same way from any
machine

0 Secure data access
= Authorized access, encrypted and authenticated data transfer

0 Minimal cryptographic overhead on NISD

= Minimal impact on NISD performance and functionalities

2 Flexible policy support

= Satisfy various environments and various requirements

5

SGFS Overview

O Trusted Entities

@ Symmetric Key Certificate
(SKC)

PM

Authentication Server (AS)
Policy Manager (PM)
Storage Device (S)

Revocation
Server

Revocation Server

—~—

Shared Keys /

: Periodic
Mimic X.509 attribute !
. Local User %, ™~ J_ . 1 __
certificate | |
: : KZ7NE Kass:
Gives power to use different A [P s
access control models ACL Enable Storage

Exploit existing PKI policy
managers

User-to-user Delegation

Local user Alice |

AS <> PM :
Revocation
\Server

(4
0

———

=" Periodic

.~
L~
-

R SA-‘

H Mutual auth.

Remote user BOB ACL Enable Storage

0 Delegation using symmetric key certificates
0 Server does not verify chains
0 No public-key operations on servers

Prototype Implementation

g

SGEFS runs 1n user space and
supports generic API

Currently SGFS runs on top
of bFSFS and maskFS

Key management

= SKC are stored securely

= Encrypted using user’s public
key

Tool support for users

= Create and securely manage
keys

= Delegate access rights

Modularity

= SGFS interface 1s independent
of FS; any FS can use SGFS

SGFS
Authenticati
on Server
(AS)
SGFS client SGFS server
Client bFSFS client bFSFS
process _ fileserver
(i.e. /bin/ls) FUSE library i
FUSE kernel ¥
module Local
v legrer filesystem
OS kernel

Summary

a

Low performance impact on the storage server
= Symmetric key cryptography - lesser overhead

Storage server 1s simple
= Check whether a client has a valid key or not

= Perform access control

User mobility
= User can store access keys on a smart card, or USB
= Encrypt with keys public key and move to other machine

Secure access

Eliminate central point of failures

= AS 1s contacted only once. Files are unavailable only if the
storage server 1s down.

Design Requirements

a

User-to-user delegation without administrative
interference

No PKI and certificate chain verification on NISD

= Minimize computation and communication overheads
No central point of failures
Seamless access to files; support user mobility

Eliminate overhead of resolving remote group names

= Users should not have to list remote group names on local
ACLs

Support for various access control models
= UNIX, RBAC

Centralized policy management

Traditional Solutions

9 Traditional solution for cross-domain sharing - create
accounts

= Requires interaction with system administrators: not flexible
Q2 Kerberos

= No user-to-user delegation

= Administrative overhead setup realms
0 User-to-user delegation using PKI

= Storage devices have to verify a chain of certificates

= Computation overhead as well communication overhead since
verifying it might require traversing trust hierarchies

11

Status

2 Completed
= Architecture design
= Design of security and key management protocols
= File system design
* Implementation of user-level file system layered on FUSE
= Implementation of security protocols

< Future
= Performance evaluation
= Design and implementation of revocation server
= Auto mounting and global naming

= Using appropriate policy engines

12

Research Goals

Q

This research focuses on developing new mechanisms to allow
secure and efficient cross-domain file sharing in the presence of

NISD

Minimal administrative interference

= User should be able to grant access to other users; sharing should not be
restricted only to “joined “ domains

Global file system

= Users should be able to access files the same way from any machine

Secure data access

= Authorized access, encrypted and authenticated data transfe

Minimal cryptographic overhead on NISD

= Minimal impact on NISD performance and functionalities

Flexible policy support

= Satisfy various environments and various requirements

13

