SGFS: Secure, Flexible, and Policy-based Global File Sharing

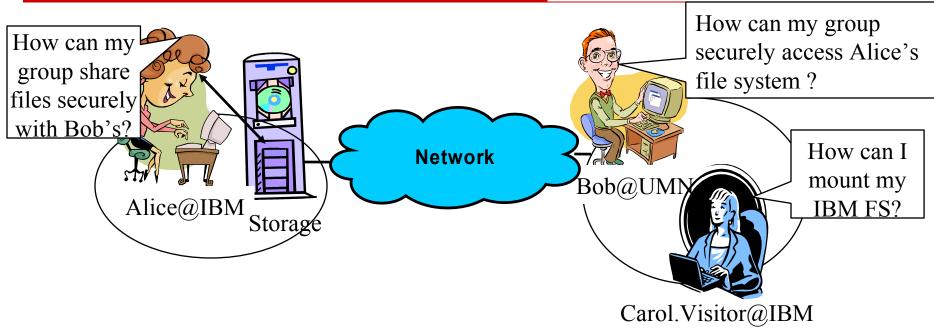
Vishal Kher

Eric Seppanen

Cory Leach

Yongdae Kim

{vkher,seppanen,leach,kyd}@cs.umn.edu


University of Minnesota

Motivation for Network attached Intelligent Storage Devices (NISD)

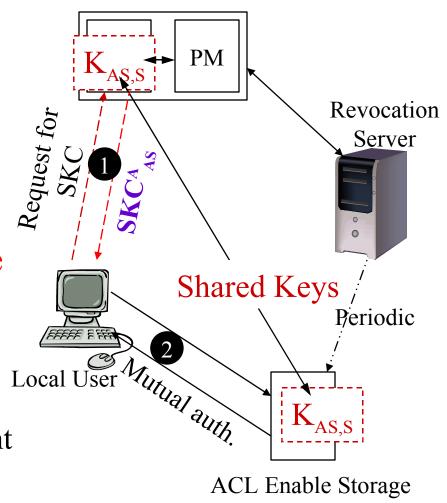
- Autonomous
 - Utilize available CPU power to perform operations
 - Security, block mgmt, search/indexing, remote query execution
- Improved data sharing
 - Devices can manage meta-data; systems need to handle only naming and location management
- Improved Scalability
 - Clients can directly interact with the devices
- Cost-constrained embedded environment
 - CPU and mem. resources not as powerful as a typical file server

Challenges for Cross-domain Sharing

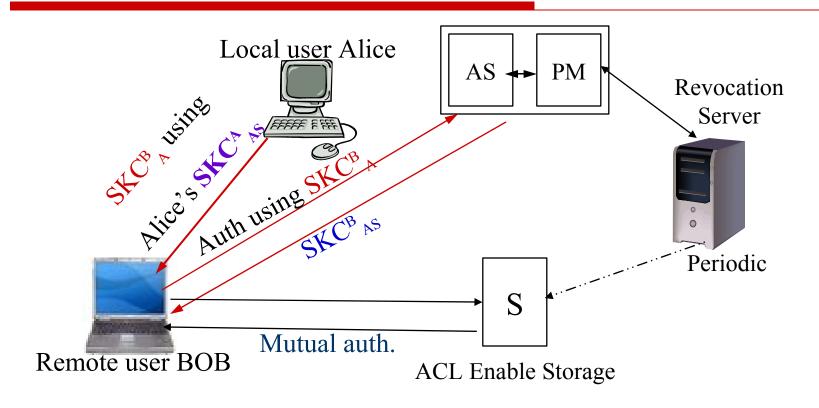
- Two main challenges
 - Allowing legitimate users to share files across domains without administrative interference
 - Providing consistent file system image irrespective client machine

Overall Goal

- Developing new mechanisms to allow cross-domain file sharing in the presence of NISD
 - Secure
 - Efficient

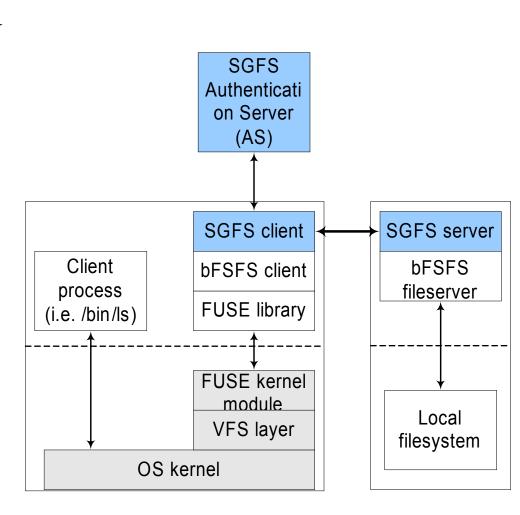


Design Goals


- Minimal administrative interference
 - User should be able to grant access to other users; sharing should not be restricted only to "joined" domains
- Global file system
 - Users should be able to access files the same way from any machine
- Secure data access
 - Authorized access, encrypted and authenticated data transfer
- Minimal cryptographic overhead on NISD
 - Minimal impact on NISD performance and functionalities
- Flexible policy support
 - Satisfy various environments and various requirements

SGFS Overview

- Trusted Entities
 - Authentication Server (AS)
 - Policy Manager (PM)
 - Storage Device (S)
 - Revocation Server
- Symmetric Key Certificate (SKC)
 - Mimic X.509 attribute certificate
 - Gives power to use different access control models
 - Exploit existing PKI policy managers


User-to-user Delegation

- Delegation using symmetric key certificates
- Server does not verify chains
- No public-key operations on servers

Prototype Implementation

- SGFS runs in user space and supports generic API
- Currently SGFS runs on top of bFSFS and maskFS
- Key management
 - SKC are stored securely
 - Encrypted using user's public key
- Tool support for users
 - Create and securely manage keys
 - Delegate access rights
- Modularity
 - SGFS interface is independent of FS; any FS can use SGFS

Summary

- Low performance impact on the storage server
 - Symmetric key cryptography lesser overhead
- Storage server is simple
 - Check whether a client has a valid key or not
 - Perform access control
- User mobility
 - User can store access keys on a smart card, or USB
 - Encrypt with keys public key and move to other machine
- Secure access
- Eliminate central point of failures
 - AS is contacted only once. Files are unavailable only if the storage server is down.

Design Requirements

- User-to-user delegation without administrative interference
- No PKI and certificate chain verification on NISD
 - Minimize computation and communication overheads
- No central point of failures
- Seamless access to files; support user mobility
- Eliminate overhead of resolving remote group names
 - Users should not have to list remote group names on local ACLs
- Support for various access control models
 - UNIX, RBAC
- Centralized policy management

Traditional Solutions

- Traditional solution for cross-domain sharing create accounts
 - Requires interaction with system administrators: not flexible
- Kerberos
 - No user-to-user delegation
 - Administrative overhead setup realms
- User-to-user delegation using PKI
 - Storage devices have to verify a chain of certificates
 - Computation overhead as well communication overhead since verifying it might require traversing trust hierarchies

Status

- Completed
 - Architecture design
 - Design of security and key management protocols
 - File system design
 - Implementation of user-level file system layered on FUSE
 - Implementation of security protocols
- Future
 - Performance evaluation
 - Design and implementation of revocation server
 - Auto mounting and global naming
 - Using appropriate policy engines

Research Goals

- This research focuses on developing new mechanisms to allow secure and efficient cross-domain file sharing in the presence of NISD
- Minimal administrative interference
 - User should be able to grant access to other users; sharing should not be restricted only to "joined" domains
- Global file system
 - Users should be able to access files the same way from any machine
- Secure data access
 - Authorized access, encrypted and authenticated data transfer
- Minimal cryptographic overhead on NISD
 - Minimal impact on NISD performance and functionalities
- Flexible policy support
 - Satisfy various environments and various requirements