
Coordinating Parallel Hierarchical Storage Management in Object-base Cluster
File Systems∗

Dingshan He, Xianbo Zhang and David H.C. Du
Department of Computer Science and Engineering

DTC Intelligent Storage Consortium (DISC)
University of Minnesota

{he,xzhang,du}@cs.umn.edu

Gary Grider
Los Alamos National Laboratory

Department of Energy
ggrider@lanl.gov

Abstract

Object-based storage technology enables building
large-scale and highly-scalable cluster file systems using
commodity hardware and software components. On the
other hand, a hierarchy of storage subsystems with different
costs and performance should be incorporated into such
systems to make them affordable and cost-effective. Exist-
ing SAN-based (block-based) cluster solutions suffer from
slow data movement between storage levels due to their
single-archiving-point architecture. In this paper, we pro-
pose a novel parallel data moving architecture in object-
based cluster file systems. Data movements are coordi-
nated and performed in parallel between multiple pairs of
storage subsystems. In addition, data movements are fully
automated and transparent to users. Our proposed par-
allel data moving architecture is prototyped on the Lustre
file system. Performance study shows that our scheme can
scale up easily by adding more pairs of hierarchical stor-
age devices.

1. Introduction

High performance computing (HPC) community has re-
alized that a Scalable, Global and Secure (SGS) file system
and I/O solution is necessary since late 90s [1]. Object-
based Storage Device (OSD) is a potentially promising ap-
proach for building such a file system. Receently two so-
lutions based on the concept of OSD have emerged: the
Lustre file system [2] and the Panasas ActiveScale file sys-
tem [3]. These OSD-based systems are expected to serve
clusters with 10,000’s of nodes, 100’s GB/sec I/O through-
put and several petabytes of high performance storage [2].
Due to the large amount of data generated within the HPC

∗This project is supported by a grant from Los Alamos National Lab-
oratory.

environment [1], data archiving and Hierarchical Storage
Management (HSM) are necessary to reduce the total stor-
age cost and to assure the sustained high performance in
the system. High performance data movement between
subsystems of storage hierarchy is extremely important for
this type of cluster file systems. A storage hierarchy is usu-
ally composed of expensive SCSI storage arrays for high
performance accessing, cheaper SATA storage subsystems
for data staging and high-capacity robotic tape libraries for
data archiving. The movements of data between storage hi-
erarchy are made transparent to applications through HSM
software. HSM takes advantage of the fact that data are not
of equal importance during any given period of time for ap-
plications. Typically, only a small subset of the entire data
set is actively used by applications.

Archive systems have been identified as one possible
bottleneck in a SGS file system and scalable HSM solu-
tions are declared as extremely desirable [1]. The expected
archival storage bandwidth was 10GB/sec (over 35 TB/hr)
in 2003 and 100GB/sec in 2006 [4]. However, the backup
and restore records announced by SGI and its partners in
July 2003 was only 2.8GB/sec (10.1TB/hr) for file-level
backup and 1.3 GB/sec(4.5 TB/hr) for file-level restore,
even through these already tripled the previous record in
2003. Obviously, the existing solution is far from catching
up with the growing requirements of archival storage band-
width. Filling the gap between the desired archiving speed
and the currently available speed is our research focus.

A high I/O speed for moving data between storage hi-
erarchy would be appreciated by scientific computing and
business users. Scientific simulations at DOE usually run
for days or months so the system must be prepared for soft-
ware and hardware failures during the running period. The
practice is to dump the simulation states at every check-
point to persistent storage so that simulation can resume
from the latest checkpoint after failure. It is possible that
multiple terabytes of data are generated over a short period



of time (every 30 minutes as described in [1]). The total
amount of data can easily exceed the storage capacity pro-
vided by the disk-based storage and have to be moved to
low-cost storage media like tapes. The data moving speed
therefore has a big impact on the simulation performance
since simulation process has to wait for the completion of
the data moving before it can resume. To reduce the finan-
cial costs for maintaining large clusters, high performance
computing power and storage resource are usually shared
by various applications among different researchers. Given
a specific time, only a subset of the applications and their
associated data need to be retained on the expensive, high
performance storage. The in-active data can be moved to
low-cost storage media. The data moving speed between
subsystems of storage hierarchy directly affects the overall
system performance. Due to the economy globalization,
business data need to be accessed 24 hours a day, seven
days a week. For business continuance, data are periodi-
cally backed up to low-cost tape media. Should any data
disaster happen, the system restore time needs to be mini-
mized to reduce the business financial loss.

In this paper, we propose a novel parallel data moving
architecture for the high performance object-based cluster
file systems. The aforementioned archive/restore bottle-
neck in the current systems is overcome by enabling multi-
ple parallel data movements between multiple pairs of stor-
age subsystems of different storage hierarchies. The object-
based storage interface is an enabling technology in that it
allows direct data movement between storage subsystems
and avoids the performance bottleneck of any single sub-
system. Further more, each OSD has a local instance of
HSM software that is responsible for the data movements
between that OSD and one or more designated lower-level
storage subsystems. The major challenge is to coordi-
nate the multiple instances of HSM on different OSDs to

Figure 1. Comparison between traditional file
systems and OSD [5]

achieve real parallelism in data movements since multiple
data objects associated with the same application can be
located in different OSDs. Another challenge comes from
possible component failures that are faced by any cluster
storage systems. We have addressed both challenges in our
proposed parallel data moving system.

The rest of this paper is organized as follows. Section
2 introduces some background information. Our proposed
parallel data moving architecture is presented in Section 3.
Then, we discuss how to maintain consistency among dis-
tributed components and how to handle component failures
in Section 4. In Section 5, we discuss the prototyping of
our proposed scheme on the Lustre file system. The perfor-
mance data of our prototyping is also reported in the same
section. Several related works are presented in Section 6.
Finally, we conclude our contributions in Section 7.

2. Background

In this section, we discuss three concepts that are es-
sential to our work: object-based storage interface, object-
based cluster file systems and hierarchical storage manage-
ment.

2.1. Object-based Storage Interface

Object-based storage is an emerging storage interface
standard designed to replace the current storage interfaces,
mainly SCSI and ATA/IDE. It is motivated by the desire
to design a storage architecture providing 1) strong secu-
rity, 2) data sharing across platforms, 3) high performance
and 4) scalability [6]. The storage architectures in com-
mon use today based on SCSI and ATA/IDE interfaces
are direct-attached storage (DAS), storage area network
(SANs), network-attached storage (NAS) and a newer ar-
chitecture called SAN file systems. Unfortunately, none of
these four architectures achieves the aforementioned four
desirable features of an ideal storage architecture at the
same time. Therefore, system designers usually first de-
cide which of these features are more important than others
as a trade-off in choosing a storage architecture.

Objects are storage containers with a file-like interface
in terms of space allocation and data access. An object is of
variable-length and can be used to store any types of data,
such as traditional files, database records, images or multi-
media data. Objects are composed of data, user-accessible
attributes and device-managed metadata.

A device that stores objects is referred to as anObject-
based Storage Device(OSD). OSDs can be in many forms
ranging from a single disk drive to a storage brick that con-
tains a storage controller and an array of disk drives. The
storage media can be magnetic disks, tapes or even read-
only optical media. Therefore, the essential difference be-



tween an OSD and a block-based device is their interfaces
instead of the physical media. The most immediate effect
of an object-based storage device is the offloading of space
management from storage applications. The comparison
between the traditional model on block I/O and the OSD
model is presented in Figure 1. The storage component
(managing storage space including free space management
and mapping logical storage objects such as files to physi-
cal storage blocks) of block-based file systems is offloaded
into OSDs in the OSD model. This improves data shar-
ing across platforms as the platform-dependent metadata
management is now inside OSDs. OSD model also im-
proves scalability since hosts running storage applications
no longer need to coordinate metadata updates and the data
path and control path are separated. Furthermore, the OSD
model can provide strong security at per-object basis by
letting the device enforce security checks on each access
request.

2.2. Object-based Cluster File Systems

Using OSDs as building blocks, Figure 2 shows a way
to construct object-based cluster file systems (OCFS) [2, 3].
A metadata server (MDS) is used to manage metadata that
include hierarchical or global namespace, file attributes and
file-to-object mapping information. Note that such meta-
data are only part of the entire metadata used by file sys-
tems of block-based devices. Most noticeably, the meta-
data server in OCFS does not need to manage file-to-block
mapping information and does not need to keep track of
free space on storage devices. As presented in the previous
section, both functions are offloaded to OSDs. The meta-
data server is a logically centralized component (physically
it can be a cluster of servers) to expose a shared and uni-
form namespace to clients of OCFS. With many of meta-
data management functions taken care by either the meta-
data server or OSDs, clients are only responsible for in-
memory data structures such as inodes and dentries of tra-
ditional file systems of block-based devices. Since client
machines of OCFS are typically also application servers
such as Web servers or DBMS servers, the light-weighted
file system functions allow them to serve their applications
more efficiently.

The MDS in Figure 2 also shows the optional function
of security manager. In the previous section, we men-
tioned that OSD model can provide strong security at per-
object basis by letting OSDs perform security checks on
every access request. In order to do this, every access re-
quest should be accompanied with a tamper-proof message
called credential describing what operations this request is
allowed and disallowed. The security manager is the au-
thority in this architecture to maintain such information

Figure 2. Object-based cluster file system

about who can do what on a particular object. It generates
the credentials upon the request of authenticated clients.

Figure 2 also illustrates how an OCFS employs file strip-
ing to handle IO-intensive and data-intensive accesses to
large files. Any logical file can be striped into multiple
objects on multiple OSDs. This file-to-object mapping in-
formation, referred to as the layout information, is part of
the metadata managed by the MDS for every file. When a
client opens a file, its layout information is extracted from
the MDS and stored in the file’s in-memory inode struc-
ture on the client along with other metadata information of
the file. Then, the client can use simple calculations based
on the layout information to convert file access requests to
one or more object access requests. When there are mul-
tiple object access requests, they are performed in parallel
to multiple OSDs instead of in sequence. The benefits of
parallel accessing are even more obvious when there are
multiple concurrent clients with multiple concurrent pro-
cesses. With a typical random access pattern, traffics can
be evenly spread across OSDs. Similar benefits apply to a
set of small files that are not striped when they are spread
among OSDs.

2.3. Hierarchical Storage Management

Hierarchical Storage Management (HSM) is a policy-
based management of file backup and archiving on a hier-
archy of storage devices. The users need not to know when
files are being archived and the access request may retrieve
data from online or lower-level storage devices. Using an
HSM software, an administrator can establish guidelines
for conditions under which different kinds of files are to
be copied or migrated to a lower-level storage device. The
conditions are typically based on ages of files, types of files,
popularity of files and the availability of free space on stor-
age devices. Once the guideline has been set up, the HSM
software manages file migrations automatically.

HSM makes the file migrations transparent to file sys-
tem users by using two mechanisms:stub filesand data



management API(DMAPI). A stub file is a pseudo file
kept in the file system after the file data are migrated to
lower-level storage. Because of it, file system users will
not see a file missing although it has been migrated to a
lower-level storage device and no longer available on on-
line storage devices. More importantly, the extended at-
tributes of a stub file are used to point to the real location of
the file in the lower-level storage. DMAPI is the interface
defined by Data Storage Management (XDSM) specifica-
tion [7] that uses events to notify user space Data Manage-
ment (DM) applications about operations on files. HSM
software is one kind of DM applications. When file sys-
tem users read/write a stub file, the kernel component of
XDSM generates read/write event and notifies HSM who
should have registered through DMAPI as willing to re-
ceive such kind of events. The process of reading/writing
the stub file is blocked until a response is received from
HSM. The HSM software handles read/write events on stub
files by migrating the requested file back to online stor-
age so that the stub files turn into real files. A response is
sent through DMAPI after the migrations completed. The
blocked read/write process can then proceed to perform the
requested operation on the real file.

3. Parallel Archiving Architecture

There is no doubt about the necessity of a storage hi-
erarchy in large-scale storage systems. As the object-
based cluster file systems like ActiveScale and Lustre have
demonstrated their extraordinary performance and scala-
bility, it is natural to ask how to incorporate some kind
of HSM into OCFS while avoiding HSM becoming a new
bottleneck of the system. Various HSM solutions exist for
single-server platforms and block-based SAN file systems.
In Section 3.4, we compare our proposed architecture with
such solutions to show that they cannot take fully archi-
tectural advantages of the potentials of OCFS. In this sec-
tion, we start with analyzing the architectural advantages
of OCFS and motivate serval key design choices. We then
present our proposed parallel data moving architecture in
OCFS. Several key operations are also elaborated to ex-
plain how the system works. Finally, we briefly compared
our proposed architecture with existing solutions in single-
server platforms and block-based SAN file systems.

3.1. Design Rationale

We have identified the following three architectural fea-
tures that contribute to the high-performance and high-
scalability of OCFS the most:

• Feature 1: function offloading
The free-space management functions are offloaded

to OSDs such that clients and MDS become light-
weighted and can perform efficiently. In addition,
the communication cost for free-space management is
also reduced from the communication network. This
additional management task causes very little problem
since OSDs typically have more than enough process-
ing power and memory buffer beyond the requirement
of handling data transfers and physical location map-
ping in block-based storage devices.

• Feature 2: separated control and data paths
As MDS is dedicated for metadata management, it
performs and scales better than having to handle both
metadata and data. On the other hand, MDS is no
longer in the critical path for clients accessing data
from OSDs. Therefore, initiated data accesses are not
affected by ongoing metadata requests.

• Feature 3: parallel data paths
With proper configuration of the communication net-
work, e.g., using FC switch instead of FC-AL, mul-
tiple parallel data paths from clients to OSDs are re-
alized. The bandwidth of the overall system can be
scaled up easily by properly adding more switches
into the network.

In our proposed parallel data moving architecture, we
fully explore the aforementioned features of OCFS and
carefully avoid undermining achieved performance and
scalability before introducing the required hierarchical
storage management functions. Following is a list of the
key architectural features of our proposed parallel data
moving architecture for OCFS:

• embedded HSM component on OSD
We propose to add one more task, a HSM component,
to OSDs. This should not be a problem in terms of the
capability of OSDs considering that Lustre and Ac-
tiveScale are using general-purpose CPU with a de-
cent amount of memory in their OSD targets. The
local HSM instance on an OSD performs similar to
today’s HSM products in single-server platforms. It
has a daemon periodically checking the availability of
free-space in the OSD’s online storage and initiating
data migrations when conditions meet. On the other
hand, when an OSD receives data access of an object
not in its online storage, the local HSM is invoked to
retrieve the object from a lower-level storage. This de-
sign choice is an extension of the Feature 1 of OCFS.
It avoids building a complicated and centralized HSM
component, which is doomed in terms of performance
and scalability.

• direct data migration paths
For one migration operation, the object data is trans-
mitted on the SAN at most once - directly from the



OSD to its associated lower-level storage. It is possi-
ble that the migrated data is not transmitted over the
SAN at all if the configuration chooses a directly at-
tached secondary storage for the particular OSD. In
comparison, the migrated data has to be transmitted
twice in block-based SAN file systems - once from
the online storage device to the HSM host’s memory
and once from the memory to the lower-level storage
device.

• parallel data migration paths
Like Feature 2 of OCFS, data migration paths are par-
allelized with proper configuration of SAN. To ex-
plore this feature, it is better to use many smaller stor-
age systems as lower-level storage than use a few large
storage systems. In the former case, each OSD can
have a dedicated lower-level storage system or a few
number OSDs share one. In contrast, in the latter case
many OSDs share one lower-level storage system so
that the data migration paths may collide at the lim-
ited bandwidth of the shared lower-level storage sys-
tems. Economically, it is also cheaper to buy a bunch
of smaller storage systems than buy a large storage
system of equal capacity. From scalability point of
view, it is also easier to expand by adding new fab-
ric switches and small storage systems gradually than
buying an expensive large system that may not fully
utilized at the moment.

• separated migration coordination paths
Very often, the distributed local HSM instances on dif-
ferent OSDs require coordination among themselves.
Although they are physically independent from each
other, the data objects that they are maintaining may
not be always independent. Especially, when file strip-
ing is used to handle IO-intensive and data-intensive
requests, an object is only a strip of the file. Such an
object is called astriped objectin this paper. Its fellow
striped objects are hosted by other OSDs under the
management of their local HSM. Several non-striped
data objects on different OSDs may also be required
for a given application at the same time. In order to
explore the feature of parallel data movement paths,
one policy can be letting striped objects or associated
objects always migrate in parallel. We choose to sep-
arate the coordination control path from the migration
data path following the spirit of feature 2 of OCFS.

• versatile storage interfaces
In the context of OCFS, the most natural choice of
storage interface for lower-level storage subsystems
is object-based storage interface. However, we de-
cide not to exclude the possibility of using the other
two major storage interfaces, i.e., block interface and

NAS. The consideration here is that organizations
may already have major investments using non object-
based storage interface. The trick is to let the OSD’s
local HSM use a universal file system interface to ac-
cess its lower-level storage subsystems. If the lower-
level storage subsystems use a block-based interface
or a NAS, the local HSM can still communicate with
them. Of course, the performance will be different de-
pending on the choice.

• eliminating DMAPI
As discussed in Section 2.3, DMAPI/XDSM is
widely used by many HSM products. Unfortunately,
DMAPI/XDSM is too heavy and HSM softwares only
use a small number of events specified by DMAPI.
Experiences have also shown that DMAPI/XDSM
does not scale well. This is also why popular file sys-
tems and operating systems are reluctant to support
DMAPI/XDSM. For better performance and scalabil-
ity, we have managed to use file attributes in MDS to
keep track of where file objects are currently stored
and use local HSM to trap the events. The result is
that DMAPI is no longer needed in our architecture.
In addition, we also do not need to leave stub files in
the OSDs’ local file systems since they are not part of
the namespace visible to OCFS users.

3.2. Architecture Overview

Figure 3 illustrates our proposed parallel data moving
architecture in OCFS. In order to coordinate distributed lo-
cal HSM instances, we introduce three new components
into OCFS:archival attributes, a Migration Coordinator
andMigration Agents. Each of them is elaborated in the
follows.

Figure 3. Parallel archiving architecture in
OCFS



3.2.1. Archival Attributes In MDS, each data file (not
directory files) has a new archival attribute. It is a value
simply indicating the level of storage hierarchy that the file
data is currently stored. The possible number of levels of
storage hierarchy is a system parameter, which should be
supported by all participating local HSM instances. For
example, it can be as simple as only level 0 indicating disk
storage and level 1 indicating tape storage, or having other
levels like SCSI disk level and SATA disk level. Currently
we are assuming a fixed storage hierarchy. Of course, if a
disk storage may be associated with more than one tape
devices, the archival attribute needs to be more compli-
cated than the current design. For non-striped files, it is
obvious what this archival attribute means. For files with
striped objects on multiple OSDs, this single archival value
is still valid since our scheme is designed to collaborate
the archive and recall behaviors of involved local HSM in-
stances. The object stripes should be at the same level of
storage hierarchy indicated by the archival attribute of the
file. The values of archival attributes are updated by re-
quests from the Migration Coordinator when there are ob-
ject migrations. The functions of the Migration Coordina-
tor are going to be discussed later in this section. When
accessing data from OSDs, a client sends the request to-
gether with the archival attribute of the file. How OSDs use
archival attributes is going to be discussed momentarily.

3.2.2. Migration Agent There is a Migration Agent
component in each OSD and it performs the following
three major functions: 1) taking care of the functions typi-
cally provided by DMAPI to enable non-DMAPI local file
systems in OSDs; 2) interacting with the local HSM in-
stance; 3) interacting with the remote Migration Coordina-
tor. OSDs receive client object requests that are accompa-
nied with their corresponding archival attributes. The OSD
interface converts the client request to a request of its local
file system. Then the file system request and the archival
attribute are passed to the Migration Agent. The archival at-
tribute specifies the level of storage hierarchy that the data
is currently stored. If it indicates the online storage, the
Migration Agent just passes the file system request to the
local file system that servers the request directly. However,
if the archival attribute specifies a lower-level storage, the
Migration Agent interacts with the remote Migration Coor-
dinator to ask for collaboration of other HSM instances on
different OSDs if the requested data object is just a stripe of
the requested file. Under the coordination of the Migration
Coordinator, all involved OSDs perform data movements
in parallel. In another situation, the local HSM instance
may decide to migrate some data in the primary storage
to the secondary storage to make room in the primary stor-
age (when the available free space decreases below a preset
threshold). The local HSM instance interacts with and noti-

fies the Migration Agent with the list of migrating objects.
The Migration Agent will again contact the Migration Co-
ordinator for possible collaborations.

3.2.3. Migration Coordinator The Migration Coordi-
nator receives archive/recall notifications from Migration
Agents. For data objects corresponding to non-striped files,
the Migration Coordinator’s responsibility is only to notify
the MDS to update the archival attributes of the correspond-
ing files. However, for data objects belonging to striped
files, the additional responsibility of the Migration Coordi-
nator is to coordinate the achive/recall by instructing mul-
tiple local HSM instances on different OSDs to perform
data migrations of all striped objects. In order to do this,
the Migration Coordinator needs to contact the MDS to get
the layout information of striped files. The Migration Co-
ordinator instructs local HSM instances by contacting the
Migration Agents who in turn contact their local HSM in-
stances, instead of directly contacting them.

3.2.4. Interfaces Between Modules Modules in Fig-
ure 3 interact with each other through well defined inter-
faces. There are three pairs of new interactions introduced
in our proposed architecture: MDS-MC (Migration Coor-
dinator), MA (Migration Agent)-HSM and MC-MA. If the
two entities are on different hosts like the MC-MA pair, the
interface is implemented through RPC (Remote Procedure
Call). Otherwise, the interface is implemented through ex-
ported kernel module APIs.

The MDS-MC interface between the metadata server
and the migration coordinator is defined as following:

• Metadata Server exported APIs

– GetLayout: This API is used by MC to query the
layout information of the file containing a certain
data object.

– SetArchAttr: This API is used by MC to update
a file’s archival attribute.

• Migration Coordinator exported APIs
None since MDS does not need any help from MC.

The MA-HSM interface between a Migration Agent and
a local HSM instance on the same OSD is the bridge be-
tween the HSM instances and the rest of the parallel data
moving architecture. It is important for that any non-
parallel commercial HSM product can be incorporated into
our propose parallel archiving architecture as long as it is
compliant with this interface. The MA-HSM interface is
define as following:

• Migration Agent exported APIs



– ReqArchive: HSM uses this API to report its in-
tention of migrating a list of objects from the on-
line storage to the lower-level storage in order to
free some online storage space.

• HSM exported APIs

– HSMArchive: This API is used by MA to instruct
HSM to migrate an object from the online stor-
age to the lower-level storage.

– HSMRestore: This API is used by MA to instruct
HSM to migrate an object from the lower-level
storage to the online storage.

Finally, the MC-MA interface between the Migration
Coordinator and the Migration Agents is define as follow-
ing:

• Migration Coordinator exported APIs

– ReqAchive: This API is used by MA to report
HSM’s intention of migrating a list of objects
from the online storage to the lower-level stor-
age.

– NotifyRestore: This API is used by MA to report
its intention of restoring an object that is not in
online storage and has an access request from
some client.

• Migration Agent exported APIs

– ArchiveObject: This API is used by MC to in-
struct MA to archive a list of objects.

– RestoreObject: This API is used by MC to in-
struct MA to restore an object.

3.3. Key Operations

In order to help understand how the components work
together in a running system, we elaborate two key opera-
tions: 1) a client accesses objects not in OSD’s online stor-
age and 2) a local HSM instance archive objects to free its
OSD’s online storage space. Note that both descriptions
omit steps related to concurrency control and error recov-
ery for easier understanding. Section 4 explains the concur-
rency control and error recovery mechanisms to guarantee
consistency under distributed concurrent clients and local
HSM instances and under component failures.

Figure 4 is the sequence steps of a client accessing an
object not in OSD’s online storage. Following is the expla-
nation of the steps:

1. The client retrieves the archival attribute of the file be-
ing accessed.

Figure 4. Accessing object not in online stor-
age

2. The client translates the file access request to one ob-
ject access request. Then, it sends object access re-
quest along with the file’s archival attribute to the OST
module of the OSD hosting the requested object. The
translation can result in accessing multiple objects but
we do not show such case here.

3. The OST module translates the object access request
to the back-end file system access request and passes
the result along with the archival attribute to MA.

4. The MA finds out the requested object is not in the
online storage by checking the archival attribute. It
then executeNotifyRestoreRPC of MC.

5. The MC callsGetLayoutto retrieve layout informa-
tion of the requested file from the MDS.

6. The MC callsRestoreObjectRPC to every MA of the
OSDs hosting the striped objects of the requested file
in parallel.

7. The MAs callsHSMRestorefunctions of their local
HSM instance to restore their striped objects from the
lower-level storage to the online storage in parallel.

8. Each local HSM instance restores the object in paral-
lel.

9. Each local HSM instance responds to its MA to indi-
cate finishing of restoring. For the OSD initiating the



restore process, which is the left-most OSD in Fig-
ure 4, the requested object is ready in the online stor-
age at this moment. Therefore, the following steps are
performed asynchronous with the rest of the main se-
quence:

(a) The MA notifies the OST to retrieve data from
the online storage.

(b) The OST performs normal access operation on
the requested object in the online storage.

10. Each involved MA sends response to the MA to indi-
cate the finish of restoring.

11. The MC callsSetArchAttrto update the archival at-
tribute of the file in the MDS.

Figure 5 is the sequence steps of a local HSM instance
migrating objects from the online storage to the lower-level
storage. The steps are elaborated as follows:

1. The HSM daemon in the left-most OSD in Figure 5
finds out that the available free-space in the online
storage has decreased below a predefined threshold. It
walks through the objects in the online storage to pre-
pared a list of objects to be migrated to the lower-level
storage. Then, the HSM instance callsReqArchiveto
report its intention to its local MA.

2. The left-most MA in Figure 5 callsReqArchiveRPC
to the MC to relay the report of migration intent of its
local HSM instance.

3. The MC callsGetLayoutto retrieve the layout infor-
mation of the files containing the requested objects
from the MDS.

4. The MC callsArchiveObjectRPC to every MA of the
OSDs hosting the striped objects of the requested files
in parallel.

5. The MAs callsHSMArchivefunctions of their local
HSM instance to migrate a list of objects from the on-
line storages to their lower-level storage in parallel.

6. Each local HSM instance migrates the requested ob-
jects in parallel.

7. Each local HSM instance responds to its MA to indi-
cate finishing of data migration.

8. Each involved MA sends response to the MA to indi-
cate the finishing of data migration.

9. The MC callsSetArchAttrto update the archival at-
tributes of the files in the MDS.

10. The MC responds to the initiating MA to indicate the
finishing of migration.

Figure 5. Migrating object from online stor-
age to lower-level storage

11. The initiating MA responds to its local HSM instance
to indicate the finishing of migrations. The local HSM
instance can check the available free-space level again
and initiate more migrations if necessary.

3.4. Comparison to Single-server and Block-
based SAN solutions

The obvious drawback of HSM solutions on single-
server platforms is that the lower-level storage can not be
shared by other servers. Such solution cannot scale up well
as the demands increase. In enterprises, it is also difficult to
justify purchasing expensive tape libraries without sharing
them among multiple hosts.

HSM solutions in block-based SAN environment such
as SGI DMF [8] and IBM HPSS [9] enable the sharing of
expensive tape libraries. However, limited by the capabil-
ity of block devices used in these system, migration opera-
tions require data to be transmitted on the SAN twice: once
from online block devices to memory of migration hosts
and again from migration hosts memory to lower-level stor-
age devices. Due to the limited number of migration hosts
typically setup in such systems, they are overwhelmed with
the responsibility of migrating data for lots of storage sys-
tems. In comparison, our proposed architecture explores
the capability of OSDs. The effects are that data only need
to be transmitted over SAN once and migration tasks are
more widely distributed among OSDs.



ALock BLock RLock
ALock CP EX EX
BLock cancel CB error
RLock PR EX CB

Table 1. Lock compatibility table

Another limitation of the existing HSM solutions in
block-based SAN environment is that they emphasize shar-
ing of archiving storage too much so that they tend to
use only a few big archiving storage subsystems shared
throughout the entire system. The problem arises from
the limited bandwidth to access the archiving storage sys-
tems. This results in long archive and restore time. Con-
sidering the shrinking backup window today, this becomes
more a concern for organizations using such systems. In
comparison, our architecture is motivated by solving this
narrow-pipe limitation of archive and restore. In stead of
using a few large archive storage systems, we choose to
use many smaller ones and properly connect them to online
storages using switch-base fabric. Multiple archive/restore
data paths exist thus archives/restores can be executed in
parallel.

4. Consistency and Error Recovery

Like any other distributed systems with concurrent op-
erations, we have to guarantee data consistency in spite
of concurrent object access operations, archive operations
and restore operations. Also, we have to guarantee data
consistency in case of possible component failures. In
this section, we first present a specially designed locking
mechanism to handle concurrency control of object ac-
cess, archive and restore operations. Then, we describe a
logging-based mechanism for error recovery.

4.1. Migration locking mechanism

In our proposed architecture, the critical data struc-
tures that needs to be protected against concurrent accesses
are thearchival attributesof files in the MDS. Clients
read archival attributes when they are going to access data
objects of the files. The migration coordinator updates
archival attributes when it has finished archive or restore
migrations of the files’ striped objects.

Although it looks like a classic read-write locking sce-
nario, it is actual not. For example, if a client is accessing
a file whose data is on lower-level storages, it anyway re-
quests a read lock on the archival attribute. However, when
the MC try to request a write lock on the same archival
attribute in order to restore the file’s objects to serve the
request, it will be blocked by the early read lock and it is
a deadlock. In addition, our specific migration semantics

make read-write locking not appropriate. Imagining that a
file’s archival attribute has been read locked by a client for
data accessing. It is possible that one OSD hosting a striped
object of the file tries to archive the object in the meantime.
In traditional locking semantics, the write lock request by
the MC will be blocked until the release of the read lock
by the client and then continue the archive. However, this
is not desirable since we are backing up a file that has just
been accessed. According to the locality property of data
accessing, the right way should be keeping the objects of
the file on online storages.

With the aforementioned properties in mind, we have
designed a specialized locking mechanism for concurrency
control of archival attributes. There are three types of locks:
Access Locks (ALocks), Backup Locks (BLocks) and Re-
store Locks (RLocks). Table 1 illustrates the compatibil-
ities between locks. Note that these locks are asymmet-
ric in the sense that their compatibilities and correspond-
ing actions depends on the sequence of locking requests.
For a pair(xlock,ylock) in Table 1, the column element
ylock is the existing lock type on an archival attribute and
the row elementxlock is the newly requested lock type.
CP indicates the lock types are compatible in that request-
ing sequence.(ALock,ALock) has valueCP since clients
accessing files do not modify archival attributes by them-
selves. EX indicates the newxlock is incompatible with
the existingylockon the archival attribute and the request-
ing process of thexlockshould be blocked until the release
of ylock. According to Table 1, clients requestingALock
on archival attributes should be blocked if there are exist-
ing BLock or RLockon the requested archival attributes.
This is because clients should not be allowed to access
the file during the process of migrations. Also, a request
for RLockis blocked if aBlockexists since restore should
not be allowed during the process of archive. However,
the reverse case, i.e., a archive request occurs during the
restore process as indicated by(BLock,RLock) , is an er-
roneous case since it is impossible for OSDs to initiate
archive process for an object not on the online storages.PR
for (RLock,ALock) indicates that a request forRLockcan
preempt existingALockson the archival attributes. This
avoids the deadlock situation described earlier in this sec-
tion. The preemption does not cancel theALocksalready
granted to clients. Instead, before the releasing ofRLock, a
message is sent to every owner ofALocksto tell them that
the archival attributes that they got earlier have been up-
dated in the MDS.CB indicates thatxlock is intending to
do actually the same thing as the existingylock. Therefore,
it can just let the owner ofylockto finish the task and notify
the owner ofxlock through asynchronous callback. This
happens when more than one independent OSDs request
to archive or restore the same file objects as indicated by
elements(BLock,BLock) and (RLock,RLock). The asyn-



chronous callback method is used instead of blocking since
archive requests issued by local HSM instances contain a
list of objects. It is unnecessary to block archive operations
of other files. Finally, we use an optimization based-on
local property in the case of(BLock,ALock). An archive
request for a file being accessed is cancelled. This could
happen when a client is accessing one of the striped objects
of a file and another striped object’s hosting OSDs wants to
archive it to free online space.

This migration locking mechanism is implemented in
the MDS.ALocksare requested by clients in the Step 1 of
Figure 4 and released at the end of the file access.RLocks
are requested by MC in the Step 5 of Figure 4 and released
as part of MDS processing of Step 11. Finally,BLocksare
requested by MC in the Step 3 of Figure 5 and released in
the processing of the Step 9 of Figure 5.

4.2. Error recovery

Component failures can cause the system to enter an
inconsistent state without proper error recovering mecha-
nism. For example, in the sequence diagram of Figure 5,
imagine the right-most OSD fails after Step 4 and before
Step 8. Even if that OSD can switch to an fail-over pro-
cessor and restart functioning, the system will not be in a
consistent state unless the OSD can finish the archive oper-
ation and response to the migration coordinator as in Step
8.

The scheme that we have employed is part of the error
recovery framework of OCFS. We explicitly assume that
the OCFS has capability to discover component failures
and system restarts, typically through heartbeating signals
and rebooting sequence numbers. We also assume OSDs
have fail-over processing components.

Not surprisingly, we use logical logging (also known as
journalling in file systems) and replaying to handle error re-
covery. Generally speaking, components log their intention
to perform an operation on its permanent storage before ac-
tually start the operation. The logged record is removed af-
ter the data related to the operation have all been committed
to permanent storages. If errors do happen in the middle of
an operation, the logged record on the permanent storage
is used to replay un-committed tasks. Fortunately, our data
migration tasks do not generate new data by themselves.
Therefore, there will be no data lost due to memory cache.

Due to the complexity of the error recovery scheme and
the common understanding of journalling mechanism, we
omit the details of the logging in this paper.

5. Prototyping and Performance Evaluation

In order to prove the feasibility of our proposed scheme,
we have done a prototyping on Lustre file system. In this

Figure 6. Lustre modules and prototyping
components

section, we briefly describe our prototyping and then study
its performance. We also share some experiences we learnt
through our prototyping process.

5.1. Prototyping on Lustre

Lustre is a scalable, secure, robust, highly-available
cluster file system [2] on Linux operating systems. It is
open source so that it is possible for us to develop our add-
on functions on top of it. Lustre has the exact architecture
shown in Figure 2. Figure 6 is an anatomy of Lustre nodes
into functional modules. We will not explain the detailed
functions of each module in this paper but interested read-
ers can refer to [2]. All white blocks are modules already
in Lustre and gray blocks represents new components or
functions developed for parallel archiving. Instead of de-
veloping separate modules for the migration agent and the
migration coordinator, we decided to instrument existing
Lustre modules to reuse existing codes. We implemented
the migration coordinator as part of themdsmodule that
handles metadata queries. In Lustre, all metadata are stored
in the local ext3 file system in the MetaData Server node.
The migration agent is implemented as part of theobdfilter
module that translates object access requests to local file
system access requests. The archival attributes are stored
as extended attributes of the ext3 file system in the meta-
data server. All local ext3 file systems in Lustre nodes
(MDS and OSD) are accessed throughlvfs modules that
is a Lustre-tailored Virtual File System (VFS). Another lo-
cal file system currently supported by Lustre is ReiserFS.
The llite module in client nodes are modified to query and



CPU Two Intel XEON 2.0GHz w/ HT
Memory 256MB DDR DIMM
SCSI interface Ultra160 SCSI (160MBps)
HDD speed 10,000 RPM
Average seek time 4.7 ms
NIC Intel Pro/1000MF

Table 2. Configuration of OSD hosts

lock archival attributes of files before sending out read or
write requests for objects to any OSD nodes through local
oscmodules, which is represented by thexattr gray block
in Figure 6. Thellite module implements a light-weighted
client file system. Its function is similar to the NFS client
file system in NFS implementations.

Since we did not find any open source HSM software,
we developed our own with restricted functions. Specif-
ically, our HSM can only migrate files between two file
systems. We have a kernel thread waken up periodically
to look for files in the file system of the online storage for
backup but we did not implement any sophisticated poli-
cies about when and what to backup. Our HSM codes are
also part of theobdfilter module of Lustre. When initial-
izing a HSM instance, a backup storage device is specified
and typically mounted as an ext3 file system. Our HSM
also use thelvfs module to access the backup file system.
In our experiments, we use iSCSI protocol to access remote
backup storage devices, which are exposed as an ordinary
SCSI disk device on OSD nodes.

5.2. Experiment Setup

Our prototyping is on Lustre version 1.4.0 and Linux
kernel 2.4.20 of RedHat 9. In all of our experiments, we
run OSD on up to 3 machines with configuration described
in Table 2. We use the iSCSI reference implementation de-
veloped by Intel [10] to set up our backup storage devices.
Up to 3 machines run as iSCSI targets in our experiments
and Table 3 contains the configuration of these target ma-
chines. When the OSD machines have loaded iSCSI ini-
tiator drivers, a new SCSI disk device is registered and be-
come available (e.g., /dev/sdc). We then create one or more
than one partitions on it and make ext3 files on each parti-
tion. When we setting up the HSM instance on the OSD,
the device name of one partition like /dev/sdc1 is specified
so that it becomes the backup storage device of that OSD.
In all experiments, client and MetaData server are running
on the same machine with the configuration similar to Ta-
ble 3. All machines are connected to a Cisco Catalyst 4000
Series gigabit ethernet switch.

With our available hardware resources, we have de-
signed four different configurations as illustrated in Fig-
ure 7. Configurations (a), (b) and (c) represents scaling up
the system by adding more pairs of OSD and backup stor-

CPU Four Pentium III 500MHZ
Memory 1GB EDO DIMM
SCSI interface Ultra2/LVD SCSI (80MBps)
HDD speed 10,000 RPM
Average seek time 5.2 ms
NIC Intel Pro/1000MF

Table 3. Configuration of iSCSI target hosts

(a) Single-pair (b) Dual-pair

(c) Triple-pair (d) Singe-backup

Figure 7. Testing configurations

ages. Configuration (d) represents the single-backup point
setup, where multiple OSDs share the same backup stor-
age. Note that even configuration (d) has multiple parallel
migration paths but they unfortunately collide at the entry
point of the backup storage. In all configurations, multi-
ple OSDs are configured as RAID 0, i.e., files are striped
as multiple objects on all OSDs. In the first three config-
urations, we create one partition on each iSCSI ”disk”. In
configuration (d), we create three partitions, each of which
is used by one of the three OSDs as backup storage. We
cannot let the three OSDs working on the same partition
since the file system may get corrupted.

Our prototyping allows us to manually trigger the migra-
tion of objects between OSDs and backup storages. When
data are backed up or recalled, we measure the throughput
achieved on each pair of OSD and backup storage. We also
measured the latency between the moment when the migra-
tion agent initiates the parallel backup/recall operations and
the moment that all replies are received. Finally, we mea-
sure the latency perceived by applications on client hosts
when accessing files on backup storage. We use a simple
program reading the first byte of a specified file. When the



Figure 8. Throughput of iSCSI

Figure 9. Throughput of ext3 file system over iSCSI

file is on backup storage, the system automatically migrates
all the objects of the file back to OSDs before serving the
reading request.

5.3. Performance Results

Before we start to test our prototyping system, we want
to know how much throughput we can achieve between
OSD machines and iSCSI target machines using iSCSI as
a baseline. Figure 8 illustrates such achievable through-
put. We have 3 pairs of OSD and iSCSI target machines
so the numbers are averaged across them. For each pair,
tests are performed 10 times and the average numbers are
reported. The iSCSI code has a packet-size limit of 256KB

so we test the packet size from 4KB up to 256KB with in-
crease of 4KB at each step. All tests are sequential read or
write starting from logical block address (LBA) 0 up to the
test size. Figure 8 shows 3 test sizes: 128MB, 256MB and
512MB. In summary, higher throughput can be achieved
for reads than for writes. Larger packet size leads to higher
throughput since overheads associated with each packet are
fixed. Larger data size has better read throughput. How-
ever, less throughput can be achieved on larger data size
due to the high cache pressure when dirty pages need to be
flushed into persistent storage devices of iSCSI targets.

In the previous test, the throughput is measured for raw
iSCSI requests. Since the HSM instances in OSDs mount
the iSCSI devices as ext3 file systems and perform file sys-



tem operations when migrating files, we useiozoneto mea-
sure the file system throughput shown in Figure 9. These
numbers are therefore the approximate maximum through-
put we can achieve on one pair of OSD and iSCSI target
machines. In the tests, we let iozone perform synchronous
IO when writing since we want to disable the delay-writes
because of the OSD cache and get the real throughput to the
iSCSI target instead of OSD memory. In our prototyping,
files on file systems of backup storage devices are always
open withO SYNCflag to force synchronous writes. In
this set of tests, we test request sizes beyond 256KB. How-
ever, we see little increase in throughput since the underly-
ing iSCSI transport always breaks requests to a maximum
packet size of 256KB. For the file size of 1GB, we see a
substantial drop in the throughput in both read and write.
This is because that the iSCSI target machines have mem-
ory capacity of 1GB and the slower disk access starts to
take over for large file sizes.

We demonstrate the scalability of our proposed archi-
tecture by measuring the aggregated throughput achieved
in the four configurations described in the previous section.
From the previous two sets of tests, we know that packet
size of 256KB achieves nearly the maximum throughput
so we use this packet size in the all tests. We run each com-
bination of configuration and file size five times and report
the average numbers in the following.

Figure 10 shows the achieved aggregated backup
throughput of each configuration over four different file
sizes. The throughput achieved on each pair of OSD and
iSCSI target is also show as sections of the bars. By look-
ing at the single-pair, dual-pair and triple-pair configura-
tions, we can see the linear increases in backup through-
put with the number of pairs. Comparison of the triple-
pair and single-backup configuration demonstrate that sin-
gle backup point can not scale up very well. In all con-
figurations, the aggregated throughput decrease as the file
system increases due to the increase memory pressure in
the iSCSI target. However, the single-backup configuration
drops much faster than the dual-pair and triple-pair con-
figurations since the other two also scale up their memory
when adding new pairs.

Figure 11 shows the aggregated recall throughput
achieved in the four configurations. The high throughput
achieved in file sizes of 128MB and 256MB are due to the
caching effect in OSD. We measure the recall throughput
by first migrate the file objects from OSDs to iSCSI targets
and then immediately recall them so that part of the files
blocks may already in OSDs’ buffer cache. We configure
the OSD hosts with only 256MB memory so the raw iSCSI
throughput starts to take over in file sizes over 256MB. In
file sizes of 512MB and 1GB, we can again observe the
near linear scalability in recall throughput with increasing
number of pairs of OSD and iSCSI target.

Figure 10. Aggregated backup throughput

Figure 11. Aggregated recall throughput

The latency perceived by application when accessing a
file whose objects are stored on backup storages is illus-
trated in Fiugre 12. We see that the improvement from the
dual-pair configuration to triple-pair configuration is not as
dramatic as from the sing-pair configuration to the dual-
pair configuration. This is due to the fixed overhead spent
in places other than IO. The singe-backup configuration
again shows poor scalability compared with the dual-pair
and triple-pair configurations.

5.4. Experiences in Prototyping

Our proposed scheme requires the MDS to answer
queries of file layout information given input parameters
of OSD identification and object identification. The Lustre
MDS uses an ext3 file system to manage the namespace and
stores file layout information as extended attributes of files.
It can not answer the aforementioned query efficiently. In
our prototyping, we take a brutal force hacking to traverse
the entire file system tree and extract layout attribute of



Figure 12. Application perceived recall la-
tency

each regular file to check whether the requested object is
part of it. A more elegant solution is definitely needed
for file systems with thousands or millions of files. One
potential approach is to create a special directory grouped
according to OSD identification number and object iden-
tification numbers so that a pair of them can be directly
translated into a pathname of a regular file. This regular file
is a symbolic-link or hard-link to the real file or file inode
containing the object. Another approach may be using a
separate database to manage this mapping. However, both
approaches requires extra efforts to keep the consistency of
mappings.

Another problem we encountered is caused by the time-
out mechanism used by Lustre to discover component fail-
ures. For our user program to test recall latency, we have
to increase the system timeout parameter so that recall of
large files can finish in time. This actually is just one of
many problems appear when we are moving from single
machine systems to multiple-component cluster systems.
New user interfaces need to be designed. In our case, in-
terfaces that specific to files potentially on backup storage
may be needed.

6. Related Work

Object-base storage is an emerging standard designed to
overcome the functional limitations in current storage in-
terfaces (SCSI and ATA/IDE). The Network Attached Se-
cure Disks (NASD) project [11] at CMU is a pilot study in
object-based storage. This work led to a larger industry-
sponsored project under the auspices of the National Stor-
age Industry Consortium (NSIC) generating a standard ex-
tension to the SCSI protocol for object-based storage [12].
The Storage Networking Industry Association (SNIA) con-
tinues to define the NSIC draft and submitted a completed

SCSI draft standard to T10 in 2004 [5]. Although the stan-
dard is still under developing, the industry is already imple-
menting systems using the object-based storage technolo-
gies. Examples include the IBM’s next generation Stor-
ageTank [13], the highly scalable Lustre file system [2] by
Cluster File Systems Inc., ActiveScale storage clusters [3]
from Panasas and so on.

There are several systems based on block devices pro-
viding transparent HSM functions. VERITAS’ NetBackup
Storage Migrator [14] is a classic DMAPI-based HSM so-
lution for single server file systems. It has implementations
on versatile file systems including OnlineJFS, XFS and
VxFS. SGI InfiniteStorage Data Migration Facility (DMF)
[8] is another single server HSM solution primarily on the
SGI XFS file system. DMF can also be combined with
SGI’s cluster file system CXFS [15]. However, DMF is re-
quired to be installed on the host working as the metadata
server of CXFS so the architecture is still similar to that of
single server file systems. IBM’s High Performance Stor-
age Systems (HPSS) [9] is a cluster storage system on top
of IBM General Parallel File System [16]. Its HSM func-
tion also relies on the DMAPI support of GPFS. However,
XDSM/DMAPI was originally designed for single server
file systems. GPFS has an extension of XDSM/DMAPI
for a cluster environment. A dedicated server is setup to
receive data management events generated in client hosts.
This server thus performs the core function of hierarchical
storage management and is call theBackup Core Server.
Since dumb block devices cannot copy data to each other
directly, special hosts calledTape-Disk Moversare attached
to SAN to perform data migrations under the control of the
Backup Core Server.

7. Conclusions

In this paper, we have proposed a parallel hierarchial
storage architecture in object-based cluster file systems.
Our main contribution is a coordinating scheme to fully ex-
plore the parallel migration data paths in this architecture.
We have developed a prototyping system on Lustre file sys-
tem as a proof-of-concept. Through performance studies of
this prototype, we have demonstrated the scalability of our
scheme.

References

[1] SGS file system RFP. Technical report, DOE NNCA
and DOD NSA, April 25 2001.

[2] Lustre: A scalable, high-performance file sys-
tem. Whitepaper, Cluster File System, Inc.
http://www.lustre.org/docs/lustre.pdf.



[3] Panasas. Activescale file system.
http://www.panasas.com/panfs.html.

[4] Gary Grider. Scalable i/o, file systems, and storage
netwoks:R&D at Los Alamos, May 2005.

[5] SNIA. SCSI object-based storage device commands
(OSD). T10 working draft. http://www.snia.org/osd.

[6] M. Mesnier, G. Ganger, and E. Riedel. Object-based
storage.IEEE Communications Magazine, 41(8):84–
90, August 2003.

[7] The Open Group. System management: Data storage
management (XDSM) api. Technical standards, Jan
1997. ISBN 1-85912-190-X.

[8] Laura Shepard. SGI infinitestorage data mi-
gration facility (DMF) a new frontier in data
lifecycle management. White paper, SGI.
http://www.sgi.com/pdfs/3631.pdf.

[9] Richard W. Watson. High performance storage sys-
tem scalability: Architecture, implementation and ex-
perience. InProceeding of 22nd IEEE - 13th NASA
Goddard Conference on Mass Storage Systems and
Technologies, 2005.

[10] IETF. Internet small computer system interface
(iscsi). Rfc 3720. http://www.ietf.org/rfc/rfc3720.txt.

[11] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff
Butler, Fay W. Chang, Howard Gobioff, Charles
Hardin, Erik Riedel, David Rochberg, and Jim Ze-
lenka. A cost-effective, high-bandwidth storage ar-
chitecture.SIGPLAN Not., 33(11):92–103, 1998.

[12] R. Weber. Object-based storage devices (osd).
http://www.t10.org.

[13] IBM Almaden Research. Storage tank.
http://www.almaden.ibm.com/StorageSystems.

[14] Veritas netbackup storage migrator for unix. White
paper, VERITAS Software Corporation.

[15] Laura Shepard and Eric Eppe. SGI infinitestor-
age shared filesystem cxfs: A high-performance,
multi-os filesystem from sgi. White paper, SGI.
http://www.sgi.com/pdfs/2691.pdf.

[16] Frank Schmuck and Roger Haskin. GPFS: A shared-
disk file system for large computing clusters. InProc.
of the First Conference on File and Storage Technolo-
gies (FAST), pages 231–244, January 2002.


