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Abstract

In a petabyte-scale file system, metadata access perfor-
mance and scalability will significantly affect the whole
system’s performance and scalability. We present a new ap-
proach called Dynamic Hashing (DH) for metadata man-
agement. DH introduces the RELAB (RElative LoAd Bal-
ancing) strategy to adjust the metadata distribution when
the workload changes dynamically. Elasticity strategy is
proposed to support the MDS cluster changes. WLM
(Whole Lifecycle Management) strategy is presented to find
hot spots in the file system efficiently and reclaim repli-
cas for these hot spots when necessary. DH combines
these strategies and Lazy Policies borrowed from the Lazy
Hybrid (LH) metadata management together to form an
adaptive, high-performance and scalable metadata man-
agement technique.

1. Introduction

Metadata management plays a substantial role in a
petabyte-scale distributed file system. Although the size
of metadata is relatively small compared to the overall ca-
pacity of the storage system, more than 50% of all file sys-
tem operations are metadata operations [12]. So a carefully
designed metadata management system is needed to avoid
potential bottlenecks caused by metadata access.

Nowadays the prevailing system architecture for
petabyte-scale storage systems is object-based storage ar-
chitecture [14]. Object-based storage architecture sepa-
rates metadata transactions and file data access as depicted
in Figure 1. The separated metadata server (MDS) clus-
ter is responsible for handling metadata request. To effi-
ciently handle the workload generated by tens of thousands
of clients, metadata should be properly partitioned to take
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Figure 1. Storage System Architecture

full advantage of the MDS cluster and to distribute meta-
data traffic. However, because the workload can dynami-
cally change, statically metadata partition can not always
balance the workload. In order to deal with the chang-
ing workload, an adaptive metadata management scheme
is needed.

The size of the MDS cluster can vary too. Metadata
management system is responsible for moving metadata
when MDSs are added or removed and should minimize
the overhead for moving metadata.

In a petabyte scale storage system, tens of thousands
of clients may access a same file simultaneously or over
a short period of time. Metadata of this file may become
a bottleneck in the storage system. It is a common phe-
nomenon in scientific computing workloads and also in
other general purpose workloads. A well designed meta-
data management strategy should be able to eliminate this
kind of bottleneck.

We present Dynamic Hashing (DH), an adaptive meta-
data management technique to provide high-performance,
scalable metadata management for extremely large file sys-
tems. When workload evolves, DH can dynamically adjust
the metadata distribution to adapt to the workload evolu-
tion. When new MDSs are added into the cluster or exist-
ing MDSs are withdrawn from the cluster, DH can mini-



mize the amount of metadata that really needs to be moved
and move the metadata in parallel. Finally, DH can iden-
tify hot-spots in the file system and eliminate bottlenecks
caused by these hot-spots.

2. Related work

According to whether metadata can be dynamically re-
distributed, previous approaches fall into two classes: static
strategy and dynamic strategy. Subtree Partitioning [5],
Hashing [4], and Lazy Hybrid [3] are static strategies and
Dynamic Subtree Partitioning [15] is a dynamic strategy.

2.1. Static strategy

Subtree Partitioning divides the global namespace into
subtrees and allots them to metadata servers. LOCUS [10],
NFS [9], AFS [7], Coda [13] and Sprite [8] use this tech-
nique to partition namespace. The major disadvantage of
this strategy is that the workload may not be evenly dis-
tributed among metadata servers.

Hashing applies hash function to the file name or
other file identifier to determine on which MDS the file’s
metadata should be stored. Vesta [4], Intermezzo [1],
RAMA [6], zFS [11] and Lustre [2] all use path name hash-
ing to locate metadata. Hashing provides a better balanced
load across metadata servers and eliminates hot-spots con-
sist of popular directories. But Hashing is a random dis-
tribution. Metadata update operations may incur a burst of
network overhead.

The Lazy Hybrid technique is based on Hashing. To ad-
dress the metadata update problem, LH uses Lazy Policies
to defer and distribute update cost. If metadata migration
is needed because of the update operation, metadata is not
moved until the metadata is first accessed. Performing the
update and metadata movement at a later time avoids a sud-
den burst of network activities between metadata servers.

These static strategies can not dynamically redistribute
the global namespace to get high throughput in the case of a
changing workload. When new MDSs are added or existing
MDSs are removed, none of these strategies address how
to determine the optimal amount of metadata that should
be moved. Finally, they can do nothing for hot-spots which
are caused by popular individual files.

2.2. Dynamic strategy

Like Subtree Partitioning, Dynamic Subtree Partition-
ing assigns subtrees of the global namespace to metadata
servers. To cope with the changing workload, Dynamic
Subtree Partitioning leverages the dynamic load balancing
mechanism to dynamically redistribute metadata among

metadata servers. Periodically busy metadata servers trans-
fer subtrees of their own to other non-busy metadata servers
to balance the workload. The smallest unit of metadata
transfer is directory (subtree). Dynamic Subtree Partition-
ing can eliminate bottlenecks caused by hot-spots consist-
ing of individual files by replication. But it can not reclaim
replicas for file metadata which are not popular any more.
These cumulate replicas will consume storage space and
incur maintenance overhead.

However, clients are ignorant of the metadata distribu-
tion. So their requests are directed randomly and forwarded
within the MDS cluster. Client ignorance leads to a large
amount of forwarding overhead. For example, when the
dynamic load balancing mechanism is deployed, nearly
20% of all the requests are forwarded [15].

3. Dynamic hashing

Like pure Hashing and LH, DH uses hashing to dis-
tribute metadata throughout the metadata server cluster.
DH also borrows Lazy Policies from LH to handle meta-
data update.

DH introduces three strategies to provide adaptive, high-
performance and scalable metadata management. These
strategies are RElative LoAd Balance strategy (RELAB)
for metadata redistribution, Elasticity strategy for meta-
data movement and Whole Life-time Management strat-
egy (WLM) for hot-spots. All these strategies make use
of a memory data structure called Metadata Look-up Table
(MLT). In the following sections, MLT and these strategies
are discussed in detail.

3.1. Metadata look-up table (MLT)

Metadata look-up table provides an additional level of
indirection between the clients and the metadata servers.
Each entry in the MLT contains two fields: the metadata
server id field and the entry version field. When a file is
accessed by a client, the hash value of the file path name is
used as index to the MLT, and the corresponding metadata
server id found in the entry indicates the metadata server
which stores the metadata for the file.

Let S = {s|0 ≤ s < 2L} represent the hash value space,
where L is the bit number of the maximum hash value. We
simply abstract the MDS cluster as a set of n servers, identi-
fied by MDS1, MDS2, . . . , MDSn. The MLT maps the hash
value space S to the metadata server id set. First, the hash
value space S is divided into N intervals of equal length,
where N satisfies n ¿ N < 2L. Then each interval is as-
signed to an entry in the MLT so there are N entries in the
MLT. There is also an MDS id field in each entry. So the
hash values relate to the MDS id. By modifying the MDS
id field, the metadata distribution is also modified.



Every client and every metadata server has a copy of
the MLT. However, all updates for the MLT are furnished
by the metadata servers. When the MLT on a server is up-
dated, the update message is broadcast to all the other meta-
data servers. Making use of the version field in each entry,
clients are sent the updated MLT when needed. Every time
an entry in the MLT is modified, its version is changed too.
When a client contacts a metadata server, it sends entry ver-
sion along with its metadata request. The contacted meta-
data server checks whether the entry version is out of date.
If the entry is invalid, the server will respond with the up-
dated entry. The client should update its entry and entry
version according to the response. So a client only updates
its out-of-date entries when these entries are used.

The MLT is kept in main memory and it will not
take up too much space. For example, suppose there are
10,000,000 files in the file system. A 20-bit hash function
is used and N can be 216, so there are 65536 entries in the
MLT. Assuming that the metadata id field needs 1 bytes
and the version field needs 4 bytes, the amount of memory
consumed by the MLT is 320KB.

3.2. Relative load balancing strategy

The workload changes all the time. Static distribution
of metadata, although carefully designed, can not always
achieve the best performance. In order to adapt to the
changing workload, DH adopts the RElative LoAd Balanc-
ing(RELAB) strategy to dynamically adjust the metadata
distribution to maintain an optimal distribution of the work-
load. The key idea of RELAB is that periodically the MDS
nodes exchange heartbeat messages including a description
of their current load level. Then busy MDS nodes transfer
part of the metadata of their own to non-busy nodes.

Assume the period for MDS nodes to exchange heart-
beat messages is T (the same value used in Dynamic Sub-
tree Partitioning can be used here). During the period T ,
each MDS maintains a special Entry Access Counter List
(EACL). Each member in the list has an access counter for
an entry in the MLT, storing how many times the entry has
been visited during the period T . In addition, each mem-
ber contains an SAI field which is short for synthetically
access information. SAI is computed using the following
equation:

SAI = (1−α)×SAI +α×access counter α ∈ (0,1]

Unlike the access counter which just stores the current ac-
cess information of an entry, SAI also takes past access in-
formation into account. α acts as a forgetting factor. The
bigger the factor is, the less effect past access information
will impose on current access information.

To measure how busy an MDS is, the absolute load level
is used. The absolute load level of a MDS is the number of
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Figure 2. Algorithm for relative load balanc-
ing

requests handled by the MDS during the period T . Tak-
ing past access information into account, the absolute load
level of an MDS is determined by the sum of all SAIs in the
EACL. Let ALL represent this sum. If the ALL value of
each MDS is equal or close to other MDS, each MDS deals
with approximately the same number of requests. That
means the load is distributed evenly and is balanced. How-
ever, a balanced load may not achieve the largest overall
throughput because metadata servers may have different
performance. RELAB tries to distribute the workload to
the metadata servers according to the throughputs of the
metadata servers. Each server is assigned a weight ad-
justment factor wi which measure the performance of the
server (such as CPU frequency, memory capacity, network
throughput, or some combination of the three). The Rela-
tive load level (RLL) of an MDS is calculated by dividing
the absolute load level by the weighting factor. RELAB’
goal is to balance the relative load levels for all MDSs. To
accomplish this, algorithm illustrated in Figure 2 is exe-
cuted at the end of each period T to adjust the RLL values.

The MLT entry size N and metadata server cluster size n
is important to the computing time of this algorithm since
the average number of elements in EACL is bounded by N
and n. For N = 65536 and n = 20, we implemented this
algorithm and executed it on a normal PC (AMD Athlon



1.54GHz, 256M memory), and found that it consumes less
than 2ms.

After the adjustment, the RLL values should be ap-
proximately equal to each other. Relative load levels are
balanced. The workload is distributed according to the
throughput of each MDS. This strategy makes better use
of better MDS and can provide optimal performance. RE-
LAB takes only one period to balance the relative load of
all metadata servers, so the relative load is almost always
balanced.

3.3. Elasticity strategy

The MDS cluster can extend or shrink. When MDSs are
added or removed, Elasticity strategy can determine how
much metadata should be moved for each MDS. After the
metadata movement stage, Elasticity ensures that the rela-
tive load of each MDS is still balanced.

When new MDSs are added, they can just be treated as
existing MDSs, but their ALL values are 0. So Elastic-
ity adopts the same algorithm used in RELAB to deter-
mine the amount of metadata that should be moved for
each MDS. The expected amount of metadata moved to
these new MDSs during the redistribution is exactly the
amount which will still hold the assertion that the work-
load is allotted to MDSs according to their performance.
So the amount of moved metadata is minimal to keep the
relative load balanced. Besides, because the ALL values of
these new MDSs are 0, the metadata is moved from exist-
ing MDSs to these new MDSs. Metadata can be moved in
parallel to hide some time-consuming disk I/O.

Elasticity utilizes algorithm illustrated in Figure 3 to
move metadata when k MDSs are leaving. It moves all
metadata resided on these candidate MDSs to all other
MDSs. At the same time, it tries to ensure that the relative
load levels are still balanced among the remaining MDSs.

3.4. Whole lifecycle management strategy

In a peta-byte scale file system, a certain file could be
extremely popular, causing thousands of clients to access
the same file at the same time or over a short period of
time. Thousands of metadata requests for the same file are
delivered to a single metadata server directly and will over-
whelm the metadata server. Popular files are hot-spots and
also bottlenecks in the file system.

3.4.1. Identifying hot-spots Before hot-spots can be
eliminated, they should be identified first. We can find
out hot-spots by recording access frequencies for popular
metadata items. The cache mechanism is leveraged to find
popular metadata items. Each cached metadata item is as-
sociated with an access information structure to recording
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Figure 3. Algorithm for moving metadata
when k MDSs are removed

access frequency for that item. The table below illustrates
the components of the access information structure.

access counter last update time popularity

The popularity field represents how popular the meta-
data is. The last update time field stores the last time when
the popularity field was updated. The access counter field
monitors how many times the cached metadata have been
visited since the last update time. When the cached meta-
data is accessed, its access information structure of the
metadata should be updated. Figure 4 shows this proce-
dure.

Actually the access counter stores how many times the
cached metadata has been accessed during a time interval
of Tp, which is the period to update popularity. α and the
power exponent b∆T

T c are used to limit the effect the initial
popularity imposes on the new popularity. To check if the
cached metadata is a hot-spot, its popularity is compared to
some threshold Pt . If its popularity exceeds that threshold,
it is a hot-spot; otherwise, it is not a hot-spot.

This algorithm can identify hot-spots efficiently and eas-
ily. To determine if cached metadata is a hot-spot, only one
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simple comparison is needed and the comparison can be
done at the same time when the metadata is accessed.

3.4.2. Client awareness Hot-spots are replicated when
they are located. The metadata server that holds the orig-
inal metadata is called the reality metadata server for the
metadata and the metadata servers that store replicas are
called the shadow metadata servers for the metadata. Re-
quests for hot-spots are directed to both the reality server
and the shadow servers. Each server will only handle a part
of all the requests. So shadow servers mitigate the stress of
the reality server brought by a popular file.

When a hot-spot is identified and replicated, the real-
ity MDS knows exactly where the shadow servers are. It
will upgrade the version of the entry for the popular file.
The update is also broadcast to all other servers in the clus-
ter. So far the clients have no knowledge of the replication
operation, so all requests for the hot-spot are delivered to
the reality MDS. The reality MDS will find that entry ver-
sions sent by the clients along with the requests are out of
date. So the reality MDS tells the clients to update their
entries and send shadow server information of hot-spots
which relate to this entry to the clients. Using this strategy,
the clients know which files are hot-spot files and where
their replicas are stored. When a client accesses a hot-spot
file, the client can randomly pick a server from among the
reality server and shadow servers and send the request to it.

Because shadow server information is transferred along
with requested metadata, no extra network overhead is in-
curred. Also, clients know where the replicas are so repli-
cas can be accessed directly. Forwarded requests in DH
will be much less than in Dynamic Subtree Partitioning.

3.4.3. Replica reclamation As the workload changes,
some popular files may become unpopular after a period of
time. When a file becomes unpopular, there is no need to
store copies of the file metadata on a number of metadata
servers. In order to save storage space and to avoid net-
work overhead caused by maintaining replicas consistency,
replicas for an unpopular files should be reclaimed.

Suppose a hot-spot has r replicas within the MDS clus-
ter. Each shadow metadata server individually monitors ac-
cess frequency for the replica on it. If a replica’s popularity
declines and becomes smaller than the popularity thresh-
old, for example Pt/r, this replica should be freed. The
corresponding shadow metadata server should remove the
replica and then tell the reality server that it has reclaimed
the replica.

When a client request for a hot-spot file arrives at the
shadow metadata server which has reclaimed the replica,
the shadow server tells the client that this file is not popular
any more. Then the client will send its successive requests
for this file to the reality metadata server. This approach
ensures that all storage space taken up by useless replicas
is freed while the file system can still work correctly.

4. Evaluation

Here we take a look at the overhead DH incurs as a
whole and compare DH with the other dynamic metadata
management strategy– Dynamic Subtree Partitioning.

Suppose there are 10,000,000 files in the system and
N = 65536, The MLT will take up 320KB memory. The
EACL used in both RELAB and Elasticity needs 12N/n
bytes on average, where n is the number of MDSs in the
MDS cluster. Usually n is a small integer. For example,
n = 20. Then each EACL needs about 40KB. In WLM
the memory consumed by the access information structure
is about 12bytes per cached metadata item. Because Dy-
namic Subtree Partitioning also records access frequency,
it has this kind of overhead too. Compared to Dynamic
Subtree Partitioning, the extra memory needed by DH is
about 320KB on each client and 360KB on each MDS.

RELAB runs periodically and will update some MLT
entries to transfer metadata. Maintaining MLT consistency
will cause some network overhead. Since old entries in
clients’ MLTs are updated when they are accessed, there
is no sudden burst of update activities in the file system.
Adding MDSs and removing MDSs happen rarely, so this
kind of update overhead is trivial. In WLM, shadow server
information are sent along with needed metadata, so no ex-
tra network activity is needed.

DH only incurs a little computation overhead. For N =
65536 and n = 20, we ran RELAB on a normal PC (AMD
Athlon 1.54GHz, 256M memory) and it took less than 2ms.
Computing time of the Elasticity strategy is approximate



to that of the RELAB strategy. WLM only needs a few
arithmetical computations per metadata access.

Compared to Dynamic Subtree Partitioning, DH has
several advantages. First, it can adapt to a changing work-
load faster than Dynamic Subtree Partitioning. The small-
est unit of metadata transfer in Dynamic Subtree Parti-
tioning is directory. So Dynamic Subtree Partitioning is
a coarse adjustment strategy and it will take a long time to
balance the load. DH moves metadata based on more accu-
rate computation results and can balance the relative load
within one specific time period. Secondly, Dynamic Sub-
tree Partitioning does not consider the metadata movement
process when the MDS cluster size changes. DH takes it
into account and moves the minimum metadata to keep
the relative load balanced. Besides, the metadata can be
moved in parallel in DH. Thirdly, Dynamic Subtree Parti-
tioning can identify hot-spots but it does not provide any
detailed method. It can replicate hot-spots but can not re-
claim these replicas. DH presents an algorithm to identify
hot-spots, replicate them when they appear, and reclaim
replicas when they disappear. Finally, because clients have
no idea of how metadata is distributed in Dynamic Subtree
Partitioning, requests are directed randomly. Almost 20%
of client requests are forwarded in the MDS cluster. In DH,
the client knows exactly which MDS contains the metadata
it needs, and there are much fewer forwarded requests.

5. Conclusions

We present Dynamic Hashing, an adaptive metadata
management technique to serve pertabyte-scale distributed
file systems. DH leverages hashing to distribute meta-
data among the metadata servers. When the workload
changes dynamically, DH introduces the RELAB strategy
to quickly adjust the metadata distribution to get high per-
formance. After the adjustment, RELAB ensures that the
relative load of each MDS is balanced. Besides, RELAB
can balance the relative workload much faster than other
metadata management techniques. When the size of the
MDS cluster changes, DH uses the Elasticity strategy to
move the minimal metadata to keep the relative load still
balanced. Finally, DH presents a strategy called WLM to
manage the whole life cycle for all hot-spots in the file
system. WLM makes use of the cache mechanism to find
hot-spots and then replicates them to eliminate bottlenecks.
When hot-spots files are not ”hot” any more, WLM will re-
claim their replicas to save storage space and avoid main-
tenance overhead. Compared to other metadata manage-
ment techniques, DH brings a lot of advantages, such as
balancing relative workload efficiently, good scalability, no
bottlenecks and less forwarded requests, etc, but only in-
curs a little overhead. We are currently implementing DH

and integrating it into our distributed object-based storage
system.
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