
SGFS: Secure, Efficient and Policy-based Global File Sharing

Vishal Kher
University of Minnesota

vkher@cs.umn.edu

Eric Seppanen
University of Minnesota
seppanen@cs.umn.edu

Cory Leach
University of Minnesota

leach@cs.umn.edu

Yongdae Kim
University of Minnesota

kyd@cs.umn.edu

Abstract

This paper presents SGFS - a secure global file shar-
ing system. SGFS is designed based on important design
requirements that include: efficiency for high performance
data access, flexibility of cross-domain file sharing with-
out administrative interference, support for flexibly policies
and off-the-shelf policy managers, ability to be deployed in
diverse environments, ease of management and low admin-
istrative overheads. Unlike existing systems that satisfya
proper subset of these requirements, SGFS is designed to
satisfy all of these requirements. In this paper, we present
the architecture and design of SGFS. We illustrate how
these requirements have influenced our design and present
the implementation of the SGFS user-space prototype.

1. Introduction

There is a rising trend of collaboration and global shar-
ing of information across multiple domains. For example,
consider a group of faculty members in a certain University
that want to collaborate with a group of faculty members
from another University and share their project’s source
code repository and experimental results. As another ex-
ample, consider a group of scientists who want to share
files generated by their simulation applications with scien-
tists from a different organization to allow them to analyze
their data and share the knowledge gathered through those
results. In both of these examples, local users need to freely
share data and collaborate with remote users. In addition,
in the second example, users need high performance data
access.

Existing cross-domain file sharing systems [4, 20, 25]
are not tailored for high performance data access. These
systems assume that users have to share a small number
of files (e.g., class project files or photos) and also as-

sume that these files are stored on traditional centralized
servers. Recently, network-attached intelligent storagede-
vices [17, 21, 23, 27, 28] have gained importance in indus-
try and academia. These devices enable low-latency data
transfers directly between the client and the storage device
to provide high performance data access. They utilize the
available embedded processing power, which is typically
less than general purpose servers, to perform activities such
as block management [17, 27], remote execution [2, 29],
search and indexing [18], and light-weight security opera-
tions [16,30]. One can envision a network of heterogeneous
storage servers1 composed of traditional storage servers
as well as special purpose storage devices providingfast
global data accessto its clients. As a result, cross-domain
file sharing systems should be designed to work efficiently,
not only in the presence of traditional storage servers, but
also in the presence of such intelligent storage devices.

As can be seen from these aforementioned examples,
collaboration can be performed between two independent
parties that may not have any pre-established administra-
tive relationships. Therefore, existing solutions such as
Kerberos [22,26] do not work in these settings as in order to
use Kerberos the administrators of the two domains should
collaborate in order to setup their systems for cross-domain
authentication, which is known to be tiresome and may not
be always feasible. In practice, very few independent orga-
nizations actually setup joined Kerberos realms. If the col-
laborating users’ realms are not joined, then the only way
to collaborate is to set-up accounts for remote collabora-
tors. Therefore, user-to-user delegation, that is delegation
of access from one user to another is important to increase
flexibility of file sharing and reduce administrative burden.

Typically, delegation of access rights from one user to
another is performed using X.509 certificate chains [1]. In
order to access files, users present a signed request and en-

1A storage server can be any entity that serves data, for example, tra-
ditional file servers, network-attached disks, etc.



tire chain of certificates to the storage servers [4,20,25].In
this case, the storage servers verify the chain of certificates
before granting access to users. Verifying certificate chains
involve traversing trust hierarchies to find common ances-
tors. During this process, the storage server has to ver-
ify multiple public-key signatures, which is a computation-
ally expensive process and may require accessing remote
databases. This verification process will increase access
latencies since all these operations have to be performed
during data-path. The whole purpose of storage devices
is to allow fast and direct access to data. Therefore, ver-
ification of certificate chains on these devices should be
avoided, which will allow them to utilize their CPU with-
out any disruption to perform assigned tasks, such as search
and indexing, high-performance data delivery, versioning,
etc. Further, verification of certificate chains can intro-
duce access latencies even when used on traditional storage
servers. Therefore, a light-weight authorization mechanism
is always desirable.

The main contribution of this paper is to present a com-
plete system that is designed to provide efficient global
file sharing without any administrative interference. It is
designed to work with existing policy managers [7, 8] so
that system administrators can set appropriate local poli-
cies. The system ensures that users behave according to
these policies. SGFS offers great flexibility, low adminis-
trative overhead, and can be used in diverse environments.
The authentication protocols are designed to be efficient
and resilient to central point of failures. These protocols
are carefully tailored for network-attached storage devices
(they also work efficiently on traditional servers).

SGFS usessymmetric-key certificates(SKC) that resem-
ble X.509 attribute certificates. SKCs achieve the nice
properties of X.509 certificates, but are light-weight as
compared to X.509 certificates. As a result, SGFS can sup-
port different access control models and can utilize existing
policy languages that are designed with X.509 certificates
in mind. In SGFS, user-to-user delegation is performed us-
ing SKC, which includes all the necessary information re-
quired by the file server to verify user credentials. To en-
sure traceability of delegation, the authentication protocols
are designed to leave audit trails that can be used by the sys-
tem administrators to selectively revoke users. Further, the
use of SKC obviates the need to map remote group names
to local identifiers and greatly reduces the administrative
burden.

2. System Design

2.1. The SGFS Symmetric Key Certificates

In SGFS, the authentication server grants every user
symmetric key certificates(SKC) that are used by the user

to authenticate herself with the storage server and share
keys with them. The SGFS SKCs are designed to mimic
the X.509 attribute certificates [1], but in a symmetric key
setting.

A SKC is generated by an entityT for a userU to be
verified by a verifierV as follows:

SKCU
T,V = {PU

T , pr fKTV(PU
T )} (1)

Where, pr f is a pseudo-random function (HMAC [5] in
practice).KTV is the key shared between the verifierV and
the certificate generation entityT. PU

T is the public infor-
mation of userU defined byT, andKU

T = pr fKTV(PU
T ) is

the secret key forU . If PU
T is made available toV, thenV

can generateKU
T , and, thus, share a key withU . UsingKU

T ,
U can authenticate withV and assert the privileges listed in
PU

T . A similar but restrictive type of symmetric key certifi-
cate was used in [28].

Properties A symmetric key certificate bindsPU
T to the

holder of the correspondingKU
T and the certificate has a

designated verifierV, but the verifier does not need to con-
tactT each time to generateKU

T . Similar to X.509 attribute
certificates, SKCs bind information such asidentity, privi-
leges, roles to the holder of the keyKU

T . They can be long-
lived and one can apply policies similar to that applied to
X.509 attribute certificates. Further, the verifier does not
have to contact any other online entity to verify the certifi-
cate. However, since they are based on symmetric key tech-
niques, SKCs differ from public key certificates - they can
be verified by a single designated party, they can be used by
the user to establish a shared key only with a single verifier
(and vice-versa), they do not provide non-repudiation, and
SKCs cannot be entirely stored in a public database (KU

T is
secret).

A different (and commonly known) notion of symmetric
key certificates was used in [3, 10]. In these approaches, a
SKC for a userB is of the formEKT (KBT,B). Where,KT

is the key known only to a central trusted entityT andKBT

is the key shared by a userB with T. Any userA (that has
EKT (KAT,A)) who wants to send an authentic message (or
a key) toB should encrypt the message withKAT and send
the encrypted message, andB’s SKC toT. T then translates
the message fromA to B by decryptingB’s SKC and re-
encryptingA’s message toB. The main drawback of this
approach is thatT has to be online to translate messages
between any two entities.

The Contents of a SKCA symmetric key certificate is
comprised of a public partPU

T (see eq. 1) and a secret part
KU

T . The public part contains the following information:
• a unique identifier of this SKC

• unique identification of the holder

• unique identification of the issuing server



• issuing servers DNS/IP address, if applicable

• list of privileges granted to the holder

• validity period of this SKC

• delegator

• constraints
The holder and the issuer can be identified by local user

name, email address, or reference to public key. If the is-
suer is a server, then the identifier can be servers global
identifier, such as DNS name or reference to public key.
Privileges can be a list of roles, list of groups, list of file
groups, etc. Constraints can restrict certain type of ac-
cess. For example, they can specify if access granted to
the holder is read-only or the time duration during which a
user can access files. Constraints can also specify whether
the holder can delegate a subset of her privileges to other
users.

2.2. Design Rationale

In this section we explain the factors that have influ-
enced the design of SGFS.

Low cryptographic overhead on storage serversIn or-
der to achieve our first goal of designing authentication
protocols that impose minimal cryptographic overhead on
the storage servers, we decided toavoid performing pub-
lic key operationson the storage servers. SGFS is de-
signed to be used for high performance data access in the
presence of network attached storage devices. Therefore,
we do not perform any public key operations on the stor-
age servers and the authentication protocols are based on
symmetric key operations. User-to-user delegation is also
performed without using certificate chains. This allows
the storage servers to perform their assigned task (index-
ing, self-securing, high performance data provisioning etc.)
without any disruption.

Resilience to central point of failuresTo make our system
resilient to central point of failures, we attempted to reduce
interactions between the user and any online entity (except
storage servers), especially between the users and the au-
thentication server. If the user has to frequently contact the
authentication server to get access credentials, then if the
authentication server is down or overloaded with authen-
tication requests, the user will not be able to access files
even if the storage server is available. Therefore, we desire
a solution in whichfiles could be unavailable to the user
only when the storage server is unavailable. To achieve
this goal, users are granted long-term access keys. We
believe that in most of the cases, changes to user creden-
tials are infrequent. For example, in Role-based Access
Control (RBAC) [14], users’ roles are usually associated

with their job in the organization, which do not change fre-
quently [11,13]. Similarly in UNIX environments, a partic-
ular user’s group membership does not change daily. One
common tradeoff of long-lived access key is revocation.
SGFS design includes revocation servers which periodi-
cally publish appropriate new revocation lists to the storage
servers. The revocation server can also perform emergency
updates if immediate revocation is required.

Flexible file sharing with minimal system administra-
tive interference In SGFS if a local user Alice wants to
share files with an external user Bob, Alice can delegate
a subset of her access rights to Bob (if the policies allow
her to do so). If Alice’s organization policies allow Bob
to delegate to other users (e.g., his group members), then
Bob can further delegate the access rights acquired from
Alice. User-to-user delegation does not require any system
administrative interference, increases flexibility of sharing,
and also reduces the management burden.

Traceable delegation and audit trailsIn practice, even if
Alice is allowed to delegate to Bob, the delegation should
be traceable. Audit logs should be maintained to clearly
indicate the delegator-delegatee relationships. This infor-
mation can be used for auditing as well as revocation. The
SGFS delegation protocol is designed in such a way that
Bob has to perform one time set-up with the Alice’s authen-
tication server (AS) to receive a SKC from the AS. During
this process the AS can verify polices and create audit logs.

Flexible policy support Organizations use different poli-
cies in different settings. Many of the existing policy
languages, such as PolicyManager [8], KeyNote [7], and
SPKI [12], offer the ability to formally express policies
making it possible to automate enforcement. These sys-
tems were designed with X.509 certificates in mind. To
exploit the flexibility of X.509 certificates in a non-public
key setting and at the same time use the existing policy lan-
guages, SGFS uses symmetric key certificates that contain
similar information as that contained in the X.509 certifi-
cates.

3. System Architecture

Figure 1 depicts the SGFS architecture. It consists of
five entities: authentication server (AS), policy manager
(PM), storage servers, clients2 (or end users), and revoca-
tion servers.

The AS is trusted by all other entities. It is responsible
to authenticate users and give them appropriate credentials.
The AS shares a unique symmetric key with every storage
server and is responsible for securely managing these keys.

2“User” and “Client” refer to the end user of the system and areused
interchangeably.



Figure 1. The SGFS Architecture.

It also maintains a database of local users and their asso-
ciated privileges and group memberships. We assume that
the AS can communicate securely with all entities. The PM
is trusted to set appropriate policies.

The revocation server is responsible to store and pub-
lish revocation lists. It periodically publishes the appropri-
ate new revocation lists to the storage servers. It can also
send emergency revocation messages to storage servers, if
immediate revocation is required. It is assumed that the re-
vocation server can securely communicate with the storage
servers and the AS.

Clients are not trusted. They can launch various ac-
tive and passive attacks. Communication links between the
clients and the storage servers are assumed to be insecure.
Since in a global file sharing system a client can access files
from any computer (e.g., home computer, remote domains
etc.), we do not assume any time synchronization between
the clients and the storage servers.

Storage servers are trusted to perform their part of au-
thentication and authorization securely. The data stored on
these servers is not encrypted. In the future, this can be
performed using existing file encryptors [6,19,24].

3.1. Usage Overview

Let us denote the key shared between the AS and a
SGFS storage serverSasK. Let Alice be a local user be-
longing to groupgenomics and Bob be an external user
(belonging to a different organization). Let user Alice be
denoted asA and let user Bob be denoted asB.

Local User Auth. Only the AS is trusted by the storage
servers. Therefore, if Alice wants to access files stored on
S, Alice should acquire a SKC forS from AS. This is de-
noted by step 1 in figure 1. After receiving Alice’s request,
AS authenticates Alice and acquires necessary information,
such as Alice’s group membership list, policies, and con-
straints. It can also consult with the PM to perform some
initial policy verification. Using this information, AS is-
sues a symmetric key certificate for Alice as follows.

SKCA
AS,S = {PA

AS,K
A
AS= MACK(PA

AS)}

Alice securely storesSKCA
AS,S and usesKA

AS to initiate a mu-
tual authentication protocol (during step 2 of figure 1) with
S. The storage server knowsK, and, hence can generate
KA

AS usingPA
AS sent by Alice during the authentication pro-

cess. UsingKA
AS Alice andS can authenticate each other

and securely communicate with each other. After success-
ful completion of the mutual authentication phase (step 2
of figure 1),Sasserts the policies and constraints listed by
AS in PA

AS. Finally, the storage server extracts the group
membership information or role-privilege information (de-
pending upon the access control model) and performs ac-
cess control using the ACLs stored locally along with the
files.

DelegationNow let us see how a local user Alice and her
genomics group can share files with an external user Bob.
Alice first generates a symmetric key certificate for Bob
SKCB

A,AS = {PB
A ,KB

A = MACKA
AS

(PB
A)} and sendsSKCB

A,AS

along with herPA
AS securely to Bob (step 3 of figure 1). Al-

ice includes necessary information inPB
A and includes her

genomics group in the group membership list inPB
A . The

SKCB
A,AS is a notification that tells AS that Alice wants to

add Bob to thegenomics group.
After receivingSKCB

A,AS, Bob can go to the AS and au-

thenticate himself usingKB
A (step 4 of figure 1). UsingPA

AS
the AS can re-generateKA

AS and verifySKCB
A,AS. AS then

performs policy checks, for example it verifies if Alice is
allowed to delegate. If all checks succeed, AS then gener-
ates a newSKCB

AS,S for Bob and sends it securely to Bob.
Bob has thus become a local user with rights to access files
belonging to groupgenomics. As in the case of Alice,
Bob usesSKCB

AS,S to authenticate withS and access files
stored onS. The file server does not need know that Bob
is an external user (although this information is included
in PB

AS for auditing). It only verifies that Bob has a valid
SKC from the AS and grants access based on the infor-
mation embedded in SKC. Further, the file server does not
need to map any remote group-ids as all the necessary lo-
cal group information is already in SKC. If Bob needs to
acquire a key for a different storage server, Bob can use
SKCB

AS,S again to get a new SKC from the AS.

Transparency It is important to note that step 1,2,4, and



5 are done transparently and the user is not aware of these
operations. All SKCs are automatically stored securely at
the client. Once the SKC for the storage server is available,
the SGFS client initiates the authentication protocol with
the server whenever necessary.

3.2. Summary of Protocols

In this section we present a brief summary of our au-
thentication protocols. The details of the authentication
protocols are omitted due to space restrictions3. The client-
server mutual authentication protocol (during step 2 of fig-
ure 1) prevents replay attacks and does not require any
time synchronization between the clients and the storage
servers. During mutual authentication, the server has to
maintain two random numbers. After mutual authentica-
tion, if secure data transfer is desired, then the storage
server has to maintain one session key for the duration of
the data transfer. Only symmetric key operations are per-
formed on the storage servers, which are computationally
inexpensive. Administrators of collaborating domains do
not have to perform any manual co-operation. A user can
securely delegate access rights to another user without any
administrative intervention. If necessary, Administrators
can set appropriate policies to ensure that users do not mis-
use their delegation powers.

SKC certificates gives us the flexibility to use SGFS
in various access control models and with existing policy
managers. SKCs are long-lived and can be transferred in
an offline manner to local users, e.g., via email. Users do
not have to frequently contact AS; therefore, users can keep
accessing the data without any disruption even when the AS
is down or overloaded. Further, users can securely transfer
SKCs from one machine to another and access files seam-
lessly from any machine. SGFS authentication protocols
do not require to maintain any long-term state on the stor-
age servers. Using SKCs storage servers can make on-spot
authorization decisions without having to contact any re-
mote server. Therefore, SGFS allows secure, flexible, fail-
ure resistant and efficient global file sharing without any
administrative interference.

4. Current Status and Future Directions

We have implemented all of the authentication protocols
briefly described in section 3.1. In addition, we have imple-
mented easy to use tools that assist users to acquire SKCs
and delegate SKCs to other users. Figure 2 represents the
SGFS system. The SGFS client runs in user space and is
layered on the top of FSFS [9], a user space file system

3A full version of this paper will be available athttp://www.dtc.
umn.edu/publications/publications.php

Figure 2. The SGFS system components

designed to be mounted through an interface provided by
FUSE [15]. The SGFS server is layered on top of the FSFS
server, which is a multi-threaded user space daemon that
accepts clients’ requests on a TCP socket.

We chose FUSE because it allowed us to implement our
concepts in user space without having to manipulate kernel
code. We chose FSFS because it is already a distributed file
systems that allows users to access files stored on a remote
server. The original FSFS code is embedded with its own
security layer. We stripped-down the FSFS (bFSFS) code
and used the bare version that allowed multiple users to ac-
cess files stored on the remote server. The SGFS client and
server code is not specifically tied to FSFS and can be lay-
ered on top of any file system. Our ideal goal is to integrate
SGFS into more general purpose file systems, such as NFS.
Hence, we decided to build the SGFS system in a modular
fashion without tying it to any particular file system.

The SGFS system is in a preliminary implementation
stage. Even though the authentication protocols are in
place, there are several challenges that need to be ad-
dressed. Currently FSFS client can mount only one file
server, which has to be specified while running the FSFS
client. It allows multiple users on the same machine to
access the mounted file server. However, since one FSFS
client can access only one server, the SGFS users can ac-
cess only one server through one SGFS client. To eliminate
this problem, the next version of SGFS system will include
two new features:global namingandauto mounting.

The current implementation does not include revocation
servers and policy managers. One of the main challenges
related to policy verification is choosing the appropriate
policy manager. To the best of our knowledge all of the
existing policy managers are tailored for public key certifi-
cates. Therefore, to exploit the existing policy managers
and give us the flexibility of public key certificates we de-
fined SKC that mimic public key certificates. We are in-
vestigating appropriate policy languages that are easy to



customize and flexible enough to be used in various access
control models.

5. Conclusion

In this paper, we have presented the architecture and de-
sign of SGFS, a secure global file sharing system tailored
for efficient data access. We have discussed the important
requirements for a global file sharing system that have in-
fluenced our design. SGFS provides secure, efficient, and
flexible global file sharing with minimal administrative in-
terference. Users can delegate access permissions to re-
mote users based on the local policies. Further, SGFS sup-
ports off-the-shelf policy engines that can be used by the
system administrators to control user delegations. Due to
its minimal cryptographic overhead on the storage servers,
SGFS is suitable for emerging intelligent storage devices.
We have developed a easy to use user-space prototype that
features our authentication protocols and simple tools that
assist users to create keys and delegate access rights to re-
mote users. All symmetric key certificates are stored se-
curely and can be moved from one machine to another to
access in a seamless manner. SGFS offers great flexibility,
low administrative overhead, and can be used in diverse en-
vironments.

6. Acknowledgements

This work was supported in part by the National Science
Foundation (NSF) under Grant CNS-0448423 and by the
Intelligent Storage Consortium at the Digital Technology
Center (DTC), University of Minnesota. We would like
to thank Mark Shaneck and Anjali Joshi for their helpful
discussions and comments on earlier drafts.

References

[1] Internet X.509 Public Key Infrastructure Certificate and
CRL Profile. IETF RFC 2459, January 1999.

[2] A. Acharya, M. Uysal, and J. Saltz. Active disks: program-
ming model, algorithms and evaluation. InASPLOS, 1998.

[3] G. Ateniese and S. Mangard. A new approach to DNS se-
curity (DNSSEC). InACM CCS, 2001.

[4] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin. The
crisis wide area security architecture. InProceedings of the
7th USENIX Security Symposium, 1998.

[5] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash
function for message authentication. CRYPTO, 1996.

[6] M. Blaze. A cryptographic file system for UNIX. InPro-
ceedings of the ACM CCS, 1993.

[7] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis.
The keynote trust management system version 2.

[8] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. InIEEE Security and Privacy, 1996.

[9] N. Cocchiaro. FSFS - the Fast Secure File System.http:
//fsfs.sourceforge.net/.

[10] D. Davis and R. Swick. Network security via private-key
certificates.ACM Operating System Review, 1990.

[11] D. G. D.F. Ferraiolo and N. Lynch. An examination of fed-
eral and commercial access control policy needs. In NIST-
NCSC National Computer Security Conference, 1993.

[12] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. SPKI Certificate Theory. IETF RFC 2693.

[13] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.Role-
Based Access Control. Artech House, Inc., 2003.

[14] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role based
access control.ACM TISSEC, August 2001.

[15] Fuse: Filesystem in userspace. http://fuse.
sourceforge.net/.

[16] G. R. Ganger and D. Nagle. Better security via smarter
devices. InHotOS, pages 100–105, 2001.

[17] G. Gibson, D. Nagle, K. Amiri, F. Chang, E. Feinberg,
H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg, and
J. Zelenk. File server scaling with network-attached secure
disk. InSIGMETRICS, June 1997.

[18] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satya-
narayanan, G. Ganger, E. Riedel, and A. Ailamaki. Dia-
mond: A storage architecture for early discard in interactive
search. InUSENIX FAST, 2004.

[19] C. F. J. Hughes. Architecture of the secure file system. In
IEEE Symposium on Mass Storage Systems, April 2001.

[20] M. Kaminsky, G. Savvides, D. Mazieŕes, and M. F.
Kaashoek. Decentralized user authentication in a global file
system. InACM SOSP, October 2003.

[21] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A case for
intelligent disks (IDISKs).ACM SIGMOD Rec., 27(3):42–
52, 1998.

[22] J. Linn. The kerberos version 5 GSS-API mechanism. RFC
1964, June 1996.

[23] R. V. Meter, S. Hotz, and G. Finn. Derived virtual devices:
A secure distributed file system mechanism. InIEEE Mass
Storage Systems and Technologies, September 1996.

[24] E. Miller, D. Long, W. Freeman, and B. Reed. Strong secu-
rity for distributed file systems. InFAST, January 2002.

[25] S. Miltchev, V. Prevelakis, S. Ioannidis, J. Ioannidis,
A. Keromytis, and J. Smith. Secure and flexible global file
sharing. InFreenix, 2003.

[26] B. C. Neumann and T. Ts’o. Kerberos: An authentica-
tion service for computer networks.IEEE Communications,
32(9):33–38, September 1994.

[27] Information technology - SCSI Object-Based Storage De-
vice Commands -2 (OSD-2). T10 Working Draft, October
2004. http://www.t10.org/ftp/t10/drafts/
osd2/osd2r00.pdf.

[28] B. C. Reed, M. A. Smith, and D. Diklic. Security consider-
ations when designing a distributed file system using object
storage devices. InSISW, December 2002.

[29] E. Riedel, G. A. Gibson, and C. Faloutsos. Active storage
for large-scale data mining and multimedia. InProceedings
of the 24th Conference on Very Large Data Bases, 1998.

[30] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-Securing storage: Protecting
data in compromised systems. InOSDI, October 2000


