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Abstract

This paper proposesSTORAGEDB: a paradigm for im-
plementing storage virtualation using databases. It de-
scribes details for storing the logical-to-physical mapping
information as tables within the database; handling the in-
coming I/O requests of the application as database queries;
bookkeeping of the I/O operations as database transac-
tions. In addition,STORAGEDB uses built-in DBMS fea-
tures to support storage virtualization functionalities;as an
example we describe how online table space migration can
be used to support reallocation of logical disks. Finally, we
describe our modifications to a traditional RDBMS imple-
mentation, in order to make it light-weight. Improving the
performance of a traditional DBMS is critical for the ac-
ceptance ofSTORAGEDB since the performace overheads
are considered a primary challenge in replacing existing
storage virtualization engines. Our current lightweight
RDBMS has a 19 times shorter invocation path length than
the original. In comparision to the open-source virtualiza-
tion software, namely LVM, the extra cost ofSTORAGEDB
is within 20% of LVM in trace-driven tests. (unlikeSTOR-
AGEDB, LVM did not have logging overhead). We consider
these initial results as the “stepping stone” in the paradigm
of applying databases for storage virtualization.

1. Introduction

With the growing complexity of storage infrastructures
in terms ofphysical sub-systems, protocols, and users, it
will soon become impossible for the administrators to: 1)
manually track the mapping of application data to the stor-
age subsystems, 2) configure and maintain each subsystem,
3) monitor and optimize the usage of the sub-systems at
runtime, 4) ensure guarantees of performance, reliability,
and security for the application data. There is thus a need
for frameworks that hide the complexity from the admin-
istrators by providing a logical view of the infrastructure
and internally handling the mapping details of the logical
disks to the physical subsystem. These frameworks are

commonly calledStorage VirtualizationEngines. Existing
virtualization engines manifest themselves as: filesystems
(such as Lustre, IBM’s Storage Tank), intelligent switches
(such as SAN Volume Controller), microcode in storage
controllers (such as IBM Enterprise Storage System, Hi-
tachi’s Lightning). A generic virtualization engine has the
following two basic modules: (1) Data-structures for main-
taining the mapping of logical disks to the physical storage
subsystem. (2) Lookup and caching mechanisms for the
logical-to-physical translations as well as the actual data
accessed from the storage subsystem. While the above
two features support basic storage access, many modern
applications [1, 6] require more advanced features, such
as: (1) Logging and periodic check-pointing of all changes
made to the data and the logical-to-physical mapping. (2)
Resource reallocation mechanisms that change the logical-
to-physical mapping on the fly, without affecting the user-
applications that operate on the logical view. (3) QoS opti-
mizations such as data encryption and data compression.

Existing DBMS implementations already support these
advanced functionalities required for storage virtualization.
Table 1 enumerates the virtualization requirements and the
corresponding database features that can be exploited to
implement them. The benefit of using a DBMS for build-
ing a storage virtualization engine is that it saves the cost
of design, development, and testing of concepts that have
been already well-developed and well-tested in DBMSs.
Our implementation of proposed prototype took only 0.5
person year. This provides us the opportunity to exploit
the DBMS to cheaply and reliably realize these function-
alities for storage virtualization. DBMS-based storage vir-
tualization does not invoke much management overhead,
thanks to simplicity of storage semantics, although DBMS
administration is costly in enterprise environments. More-
over, commercial DBMSs, primarily driven by benchmark-
ing wars (TPC-C, TPC-H, etc. [14]), have significantly im-
proved in performance. Any assumption based on the “con-
ventional wisdom” of database inefficiencies needs to be
re-examined.

In this paper, we propose STORAGEDB, as a paradigm
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Table 1. Correlating Storage Virtualization functions to Database concepts
Storage Virtualization Functionality Database-based Implementation
Data-structures for the logical-to-
physical mapping

Stored as a table with the table rows pointing to the physicallocation of
the data

Lookup and caching mechanisms Caching handled by the buffer pool; data lookup handled as queries
Recoverability Write-ahead log and periodic checkpoint
Resource reallocation Alter container assignment and rebalance data placement
QoS optimizations Built-in row-level encryption and compression functions

for leveraging a DBMS for building a storage virtualization
engine. The main contributions of this work are: (1) We
propose to correlate the concepts between the storage vir-
tualization engines and the DBMS engines, namely, storing
the logical-to-physical mapping information as tables and
handling the incoming I/O requests of the application as
DBMS queries. (2) Based on this basic paradigm, we em-
ploy STORAGEDB with various advanced features, such as
recovery, online resource reallocation, storage compression
and encryption. All these features are of great importance
in practice and can be cheaply and reliably implemented
in our STORAGEDB. (3) We have implemented STOR-
AGEDB as a prototype based on a commercial DBMS.
While our STORAGEDB has significantly more advanced
features than existing virtualization engines, the extensive
experimental study shows that the extra cost of the STOR-
AGEDB system performance is relatively small (20% in
average from trace driven experiments) compared to those
existing systems due to our various optimization strategies.
As an added benefit, our STORAGEDB is independent of
any specific operating systems or hardware platforms.

2. Handling I/O requests using DBMS

In a typical storage virtualization system [8, 13], the I/O
requests from the application often refer to the addresses of
logical blocks. The role of the virtualization engine is to
translate these logical blocks to the actualphysical blocks.

2.1. Logical-to-physical Mapping

The data stored on the logical disk as well as on the
physical disk can be represented asblock vectors; a block
vector is a set of consecutive blocks. As such, the physi-
cal or logical devices can be represented as a collection of
block vectors. The physical block vector consists of a set
of 512 byte consecutive blocks from the same physical de-
vice. The entire physical storage, which consists of several
physical devices, can thus be modeled asr physical block
vectors as shown below.pi

j is the jth physical block of
vectorPVi .

PVi = pi
1, pi

2, pi
3, · · · pi

q1
,(1≤ i ≤ r)

Similarly, the logical disks, namely LUNs, are defined
in terms ofn logical block vectors as follows.bi′

j is the

contents of thejth block of logical block vectorBVi′ .

BVi′ = bi′
1, bi′

2, bi′
3, · · · bi′

m1
,(1≤ i′ ≤ n)

In STORAGEDB, ther physical block vectors, then log-
ical block vectors, and their mapping are implemented as
follows. First, we propose to instantiate logical block vec-
tors and physical block vectors using DBMS objects. For
each logical block vectorBVi , we define atable TBVi . The
corresponding table schema is(block.number,block.data).
The field block.numberhas an integer value and it rep-
resents the block number for the data stored in the same
row. The fieldblock.data is 512-Byte binary. Each phys-
ical block vectorPV j is represented by acontainer CPVj .
DBMS supports containers residing on files or containers
on raw devices. Here raw devices are disks or disk par-
titions exported through raw IO interface. We deploy the
raw device containers to have the DBMS manage the stor-
age subsystem directly. A container consists of pages, the
smallest IO unit in DBMS, and each page contains records,
whose size equals the row size in a table. Hence, a block
in CPV j can be identified by the page ID and the record
ID. Finally, table spaceis the DBMS object keeping track
of the mapping between logical block vectors and physi-
cal block vectors in STORAGEDB. A table space consists
of a set of containers exclusively and each table space is
dedicated to oneTBV table. After the relationship between
logical block vectors and physical block vectors is set up
by defining a table space, the one-to-one mapping from one
logical block to one physical block is maintained by a ta-
ble space map. When the logical block vector changes its
residential physical block vectors, the table space map is
modified to reflect the up-to-date status. To convert LUN
BVi to tableTBVi , a meta table is created.

2.2. I/O Access Mechanism

Without loss of generality, we assume that the applica-
tion’s read and write requests are in SCSI format [11]. The
mapping proposed below can also apply to other IO stan-
dards, such as ATA/IDE [2] and Fibre Channel Protocol [4].
A block I/O request is described by 5 parameters: (T , i, s,
n, C ). T describes whether the access type is a read or
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write; i is the logical block vector number;s is the starting
block to be accessed within the logical block vectorBVi ; n
represents the number of consecutive blocks to be accessed;
C contains the contents of the blocks to be updated for write
access. For read access,C returns the blocks being read.

Figure 1 depicts the IO flow through STORAGEDB. A
meta table is first accessed to map the LUN ID into a ta-
ble ID. The protocol converter takes the table ID and other
parameters from the SCSI call as input and maps them
to a DBMS call. DBMS calls are initiated in SQL [12].
Table 2 shows a simple example of translating a single
block (n = 1) I/O to a SQL query. I/O calls with more
than one block (n > 1) are converted into more complex
SQL queries. We use UPDATE statements on table TBVi

for write IOs and SELECT statements for read IOs. The
functions f and f−1 are included in our SQL statements
to adopt various DBMS built-in functions which we will
describe later. For now,f and f−1 are identity functions.

Table 2. SQL statements for single block I/Os
write: read:
UPDATE TBVi SELECT f−1(block.data)
SET block.data=f (C ) FROM TBVi

WHERE block.number =s WHERE block.number =s

The task of the DBMS server is to locate the record with
block.number= s in the tableTBVi , and then perform the
read or write operations on theblock.data column which
holds the data for the block. Unless the database page
containing the record is already in the DBMS buffer, the
DBMS would fetch the page from physical storage, pin it
in the DBMS buffer, locate the record within the page and
read or write the data column of the record.

3. Exploiting Built-in DBMS Features for
Storage Virtualization

DBMS technologies in general are mature and proven.
This section briefly describes how DBMS features can be
used for storage virtualization.

3.1. Supporting Data Reliability

In STORAGEDB, every IO operation is handled as a
database transaction. A database transaction satisfies the
ACID properties [10], namely, Atomicity, Consistency,
Isolation and Durability. From the storage virtualization
perspective, atomicity ensures that either the entire IO is
completed, or no changes are made; Durability ensures that
after an IO is completed, it should be in the system and

never lost; Isolation allows concurrent IOs while still hav-
ing the results serializable; Consistency ensures that certain
rules or constraints are not violated in the storage systems.
For instance, when a LUN table is to be deleted, the cor-
responding mapping rule in the meta table needs to be re-
moved too.

In STORAGEDB, every transaction is logged using the
write-ahead log (WAL) technique that enforcesatomicity
and durability [10]. WAL requires that the data updates
be first written to the log before changing the actual data
image. When a system crashes, the recovery process ap-
plies the delta log sequentially redo the committed IOs,
and applies the delta log in the reverse order to undo the
uncommitted IOs. Next, by mapping the block IO transac-
tions to the database transactions, theisolationproperty for
those block IO transactions is automatically enforced by
the DBMSs. Finally, theconsistencyproperty is also im-
portant for block virtualization engine. For example, when
a logical block vector (LUN, or table) is deleted, the corre-
sponding entry in the meta table must also be deleted. This
can be achieved using referential integrity. If the table is
dropped and the corresponding row in the catalog table is
deleted, then the referential integrity cascades such deletes
to the meta table. As a final conclusion, STORAGEDB can
easily utilize the ACID properties of DBMSs to achieve a
reliable storage system.

3.2. Online Resource Reallocation

With the changing access patterns associated with the
application data, the mapping of data to the storage re-
sources needs to change to support the performance re-
quirements of the data and also provide optimal utilization
of the available storage resources. Hence, it is crucial fora
storage virtualization engine to provide anonlinedata mi-
gration function, which moves data from one or one set of
physical disk(s) to another without pausing application IOs.

Recall that in STORAGEDB, the logical disks are rep-
resented by DBMS tables, and the tables are further asso-
ciated with containers through table spaces. It is possible
to implement online LUN migration, if DBMSs are able
to move data across containers. STORAGEDB allows re-
assignment of containers to a table space. Hence, a data
migration function can be implemented by adding new con-
tainers to the table space, and then removing old contain-
ers from the table space. STORAGEDB will automatically
move data from the source disks to the target disks. Note
that the data movement path does not involve DBMS buffer
activity and runs at the storage level directly. STORAGEDB
uses a feedback-based throttling mechanism to control the
impact of data migration. This mechanism is in-built in
several commercial databases such as DB2.
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Figure 1. IO Flow in STORAGEDB

3.3. Block Level Compression and Encryption

Compression trades off CPU for storage efficiency. Ac-
cording to the ”80/20” rule, most of the stored data is less
often accessed. Hence infrequently accessed storage is an
ideal candidate for compression [5, 3]. Compression also
saves storage bandwidth and hence improves performance.
The implementation of storage compression is achieved by
simply adding thecompressionverb in the SQL statement
as shown in Table 2. Thef () and f−1() functions are re-
spectivelyCOMPRESS() andUNCOMPRESS().

With emerging regulations such as HIPAA [7], data se-
curity is becoming a legal requirement for storage appli-
cations. In STORAGEDB, encryption is achieved by us-
ing the verbencryptin the SQL statements (shown in Ta-
ble 2). The functionf () is simplyENCRYPT() and f−1()
is DECRYPT(). STORAGEDB uses the RC2 block cipher
with padding encryption algorithm.

In both cases, every row in the LUN table stores
compressed/encrypted data, and the data is com-
pressed/encrypted and uncompressed/decrypted on
the fly for read and write IOs.

4. Optimizations for STORAGEDB

Using a DBMS in a traditional way to serve the purpose
of block virtualization incurs large performance overheads.
This becomes a major concern because I/O subsystems
have real time requirements. Hence, we optimized several
critical components to build an embedded DBMS which
exhibits much less overheads. STORAGEDB requires extra
space to store the metadata. Some of the proposed opti-
mization techniques also reduce space overhead.

Table Direct Access Beyond the traditional optimization
strategies, we found that STORAGEDB has some unique
properties such that special optimizations may be applica-
ble. First, in STORAGEDB, the rows are fixed-size with
one integer column,block.numberand one 512-byte bi-
nary columnblock.data. Second, the updates will never
move the rows since the keysblock.numberremain un-
changed. Based on these two properties, we can lay out
the records in such a way that their addresses can be
computed by a mathematical formula, which is simply
block.number×sizeo f(row)+start o f f set. With this ap-
proach, record access becomes much less expensive since

index access can be completely avoided. This in fact also
reduces the space cost for the indices. We call this access
methodTable Direct Accessor TDA for short. The DBMS
we used, was capable of supporting TDA.

Static Query Optimization Also we found, through ex-
periments, that the query optimizer always produces the
same access method for all types of queries in our STOR-
AGEDB scenarios. One reason is due to the simple struc-
tures of the table as well as the queries. Hence optimiz-
ing once and reusing the same optimized plan for sub-
sequent DBMS calls dramatically reduces the optimizer’s
cost. This can be achieved by exploiting the Static SQL [9]
feature in a DBMS.

Our preliminary experiments show that by employing
both TDA and Static SQL, the CPU consumption is re-
duced by more than 60% for the queries in Table 2. Hence
our STORAGEDB employs both TDA and Static SQL fea-
tures. In the rest of this paper, we will consider this system
as a basic implementation and explore various strategies to
further optimize the performance.

Optimization of Cursor Processing An I/O request gen-
erally translates to multiple data blocks being accessed.
Thus, the DBMS server will produce a query result-set with
multiple records and send them to the client. In order for
the STORAGEDB client to obtain such results, the Cursor
process needs to be invoked foreachresult row to fetch and
copy this row to the client host variable.

The idea is simply to reduce the number of records.
Since the query results have to remain correct, the reduc-
tion of the number of records implies an increase in the
size of each record. In practice, the output record length
often has some limitationLmax. Hence, we can reduce the
number of records, or the number of Cursor invocations,
to ⌈n/Lmax⌉. In order to return a record that concatenates
several table rows on the server side, we need to introduce
a specialUser Defined Function (UDF). UDFs can extend
the functionalities of existing database engine. It can run
in the DBMS engine space by specifying the fenced mode,
and therefore be executed almost as efficient as native built-
in functions. Our experimental study shows more than 60%
reduction of the Cursor cost by this technique.

While the above technique reduces the cursor invoca-
tion times to 1 or⌈n/Lmax⌉, further optimization is possi-
ble to completely remove such cursor processing. That is, if
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the DBMS server can directly communicate with the client,
then we can completely avoid Cursor processing at all. This
is possible when the DBMS server and client reside on the
same host machine, and the data passing is through the IPC
shared memory. Therefore, the cursor processing overhead
can be completely removed. While IPC shared memory
is superior to the cursor approach, the cursor approach is
generic for both local and remote server accesses.

Optimization of Query Processing The UDF approach
described in the previous subsection successfully reduces
computational cost as well as latency. However, the embed-
ded DBMS server will still incur a significant per-record
computational overhead, i.e., invoking the UDF per block.
To further optimize for performance, we re-design the table
schema, so that multiple consecutive blocks are stored to-
gether within a single record, referred to asblock accumu-
lation. We omit the analysis on the saving of computational
cost in this extended abstract, and defer it to the full paper.

Assume that the number of blocks in a row isk and a
IO size isn blocks. We now analyze how to decide the
value ofk. With block accumulation, a tuple inTBVi now
becomes〈 j, bi

jb
i
j+1...b

i
j+k−1〉 by combining〈 j, bi

j〉, 〈 j +

1, bi
j+1〉, ...,〈 j +k−1, bi

j+k−1〉. DBMSs read or write rows
in data page units, which can be defined as a multiple of
4KBs. A data page consists of a page header, pointers to
the rows in the page, and rows. Rows may not span pages.
We call the former two data structurespage metadata. To
maximize data page utilization, we put as many blocks as
possible into one page and merge them into one row. There-
fore, the value ofk is given by the following formula.

k = ⌊
page size− page metadata size

block size
⌋ (1)

For instance, if the page size is 8K bytes, page metadata is
400 bytes and block size is 512 bytes, thenk equals 15.

In summary, the number of rows processed by the UDF
function for the block range[s, s+n−1] reduces fromn to
⌈n/k⌉ or ⌈n/k⌉+ 1. Our UDF function was appropriately
changed to be aware of block accumulation, and was capa-
ble of starting with a block that is not necessarily aligned
at the beginning of the column containing the blocks.

4.1. Summary of Experimental Results

We have implemented STORAGEDB as a prototype
based on a commercial DBMS, IBM DB2 UDB v8. In this
section, we evaluate the performance feasibility of using
STORAGEDB as a storage virtualization engine. For our
experiments, we compared STORAGEDB with the open-
source Linux Logical Volume Manager (LVM) [13]. Even
though STORAGEDB is functionally superior to LVM, we
use the experimental results as a ballpark estimate for the

feasibility of this paradigm. We only show a few results
and refer to our full paper for testbed details and extensive
evaluation results.

We analyze the effectiveness of the improvements made
to eliminate CPU overheads in STORAGEDB, namely, 1)
O0: Apply Table Direct Access method; 2) O1: O0 plus
static SQL; 3) O2: O1 plus concatenation UDF; 4) O3: O2
plus shared memory; 5) O4: O3 plus block accumulation.
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Figure 2. CPU Time Improvement

Figure 2 depicts the total CPU time for each case of
reads and writes. We normalize the CPU times over the
CPU time for O1 read case. The relative scale still remains
the same. Compared to O0, we achieve 19 times CPU time
speedup for 8KB read IOs, and 10 times CPU time speedup
for 8KB write IOs. This establishes the effectiveness of our
proposed optimization strategies.

Table 3. IO Traces
Trace Type Latency Ratio
BYU TPC-C benchmark 1.21
US2 File system server 1.32

WebSearch Web search engine 1.02
Financial2 OLTP application 1.30

To reveal the performance in reality, we drive traces
from real-world workloads as listed in Table 3, and we re-
port the latency ratio of STORAGEDB over LVM. The ra-
tio for WebSearch trace shows the smallest performance
gap, because WebSearch consists of mostly read IOs. Be-
cause STORAGEDB logs changes for write IOs, the over-
head of extra seqential log IOs is shown in the results of
other traces. On average, the latency of STORAGEDB is
20% more than that of LVM, which is a surprisingly good
number, while STORAGEDB provides much more useful
functions.
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5. Conclusion and Future Work

Implementing an OS-independent block virtualization
engine using a DBMS is proposed and demonstrated for
the first time in this paper. We present our design of a
DBMS-based virtualization engine, STORAGEDB, and the
corresponding table schema and interface for block virtu-
alization. Techniques, including new User Defined Func-
tions, and block accumulation are developed. System per-
formance, represented by CPU consumption and latency, is
improved by over an order of magnitude for the embedded
DBMS block virtualization solution. The IO performance
from trace-driven experiments of our STORAGEDB solu-
tion is within 20% more than LVM [13], an open source
block virtualization engine, while it delivers enforced re-
coverability and concurrency control required by the stor-
age systems. Valuable functionalities, such as online LUN
migration, storage compression and encryption, are also
implemented easily by exploiting existing DBMS function-
alities. In this paper, we address the problem of exploit-
ing external routines provided by DBMS to support storage
sub-systems efficiently. To further improve STORAGEDB
performance, as our future work, we are exploring the op-
timization inside the DBMS kernel.
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