Simulation Study of iSCSI-Based Storage

Yingping Lu, Farrukh Norman & David Du
(lu, norman, du)@cs.umn.edu

Digital Technology Center Intelligent Storage Consortium
University of Minnesota

NASA/IEEE MSST 2004

12th NASA Goddard/21st IEEE Conference on Mass Storage Systems & Technologies
The Inn and Conference Center
University of Maryland University College
Adelphi MD USA
April 13-16, 2004
Outline

- Motivation
- Simulation Model
- Implementation
- Performance Evaluation
- Conclusion
Motivation

- iSCSI creates a new storage paradigm
 - Greatly extend the storage distance
 - Exploit the ubiquity of the Internet
- The underlying TCP/IP protocol has a lot of uncertainty
 - TCP/IP is an open protocol
 - The network infrastructure is heterogeneous
- A performance tool to assist:
 - The evaluation of design alternatives and tradeoffs
 - The study of performance characteristics and developing of new applications, etc.
Objectives

- Exploit the existing NS-2 simulation tools developed for TCP/IP network
 - A variety of built-in protocols, flow control mechanisms, and flexible configurations
- Create a generic simulation tool consisting network and storage components for iSCSI
 - Modular and well-defined interface between components
 - Easy configuration of test setting
- Study the impact of network setting to the storage access performance
 - The PDU length
 - The network bandwidth and delay
iSCSI Protocol Structure

- **Application layer**
 - Application
 - Disk I/O requests

- **SCSI layer**
 - SCSI Initiator
 - SCSI
 - iSCSI protocol entity
 - iSCSI
 - Session
 - iSCSI transport
 - SCSI Target

- **iSCSI protocol layer**
 - iSCSI protocol entity

- **TCP/IP**
 - TCP/IP
 - TCP/IP

- **Data link**
 - Ethernet
 - Data link

- **Physical media**

- **Block data**
- **SCSI CDB**
- **iSCSI PDU**
- **TCP segment**
- **IP packet**
- **Ethernet frame**
Data Access Operation

Data Read

Initiator

iSCSI Read CMD (CDB)

iSCSI Data-in PDU

iSCSI Data-in PDU

iSCSI Data-in PDU

iSCSI Response

Target

Data Write

Initiator

iSCSI Write CMD (CDB)

R2T

iSCSI Data-out PDU

R2T

R2T

iSCSI Data-out PDU

iSCSI Data-out PDU

iSCSI Response

Target
Simulation Components

- Initiator node
- Storage Gateway
- Target
- TCP Agent
- FC-Channel Link
- Disk
Implementation: iSCSI Node

- iSCSI Nodes
 - Initiator Node
 - Target Node
 - Gateway Node

- iSCSI Session
 - Initiator Session
 - Target Session

- iSCSI Connection
 - Initiator Connection
 - Initiator Connection

- iSCSITcpApp
 - iSCSITcpApp

Diagram shows the relationship between different nodes and sessions in an iSCSI network.
System Architecture

Requests from users

SCSI

Session -2

Session -1

Connection-1

iSCSITcpApp

FullTCPAgent

TCP/IP Network

Disk Controller 1

Fibre-Channel Controller

Target-2, Session-2

Target-1, Session-1

Connection-1

iSCSITcpApp

FullTCPAgent

Disk Controller 2
Simulation Setting

- **Disk Model:**
 - Seagate ST39102FC Cheetah 9LP
 - Rotation speed: 10025 RPM

- **Fibre Channel:**
 - 1Gb/s link

- **Gateway node**
 - 1 target
 - 8 disks in the target
 - Adjustable window size, segment size

- **TCP/IP network**
 - 1 link with adjustable bandwidth, delay

Test Setting

- Initiator
- Gateway
- SAN
Latency Comparison

Read
PDU=8KB
Delay=1.5ms
Win=80
Link BW=100Mb/s
Throughput Comparison

Read
PDU=8KB
Delay=1.5ms
Win=80
Link BW=100Mb/s
Performance Evaluation

Throughput of Read vs. PDU Size

- Read
- PDU=8KB
- #Thread=1
- Delay=1.5ms
- Win=80
- Link BW=100Mb/s
Write
PDU=8KB
#Thread=4
Delay=5ms
Win = 100
Link BW=100Mb/s
The Effect of Link Bandwidth

Write
PDU=8KB
Win = 80
#Thread=4
Delay=1ms
MSS=1460
The Effect of Link Delay

Write
PDU=8KB
MSS=1460
#Thread=4
Win = 80
Link BW=100Mb/s
The Effect of Window Size

Write
PDU=8KB
MSS=1460
#Thread=4
Data size = 64KB
Link BW=100Mb/s
Conclusion

- Integrate the TCP/IP network and storage simulation
- Study the impact of network characteristics to the performance of iSCSI storage system
 - The impact of PDU size
 - The impact of link delay
 - The impact of network link bandwidth
 - The impact of window size
Future Work

- Study the effect of TCP flow control mechanism, error control
- Apply scheduling algorithm and caching scheme in disk
- Implement storage brick and RAID function in the target