
Towards an Object Store

Alain Azagury Vladimir Dreizin Michael Factor Ealan Henis Dalit Naor
Noam Rinetzky Ohad Rodeh Julian Satran Ami Tavory

Lena Yerushalmi
IBM Haifa Research Laboratories

{azagury,dreizin,factor,ealan,dalit,noamr,orodeh,satran,tavory,ylena}@il.ibm.com

Abstract

Today’s SAN architectures promise unmediated host ac-
cess to storage (i.e., without going through a server). To
achieve this promise, however, we must address several is-
sues and opportunities raised by SANs, including security,
scalability and management. Object storage, such as in-
troduced by the NASD work [14], is a means of address-
ing these issues and opportunities. An object store raises
the level of abstraction presented by a storage control unit
from an array of 512 byte blocks to a collection ofobjects.
The object store provides “fine-grain,” object-level secu-
rity, improved scalability by localizing space management,
and improved management by allowing end-to-end man-
agement of semantically meaningful entities.

This paper presents a detailed description of how an ob-
ject store works and describes the design of Antara, our
prototype object store. For a cache hit workload, our pure
software prototype is able to service roughly 14000 4K I/O
requests per second. We also present a layered security
model for an object store which separates concerns of ac-
cess security and network security, leveraging existing se-
curity infrastructure.

1. Introduction

Today’s SAN architecture promises “democratization”
of data access,i.e., inexpensive, non-mediated, and shared
access to centrally-managed storage. In existing SAN de-
ployments, this promise is only partially met. Typically,
each logical unit (LU) is used by only a single host; in other
words, the storage is partitioned among the hosts, and the
hosts treat the storage as if it were directly attached. Shar-
ing is typically accomplished by having a file server medi-
ate access to the underlying storage. Finally, today’s SANs
are almost 100% based upon Fibre Channel, an expensive
technology.

SAN file systems, such as Storage Tank [6], Lustre [4],

CXFS [26], etc., are, however, truly attempting to deliver
on the promise of SANs by providing unmediated shared
access to data. Further, IP-based SANs,e.g., iSCSI [25],
are expected to have a lower cost than Fibre Channel based
SANs, due to the relatively lower cost of an IP infrastruc-
tures (e.g., Ethernet) as compared to Fibre Channel. These
systems, however, run up against several of the inherent is-
sues raised by SANs: security and protection, end-to-end
management at a meaningful semantic level, and scalabil-
ity (in particular for allocation).

Object stores can address all three of these issues, al-
though most of the work to date has focused on the prob-
lem of security for data requests from independent entities
transferred over a shared network. An object store raises
the level of abstraction presented by today’s block devices.
Instead of presenting the abstraction of a logical array of
unrelated blocks, addressed by their index in the array (i.e.,
the Logical Block Address or LBA), an object store ap-
pears as a collection of objects. An individual object is
akin to a simple byte stream file, presenting the abstraction
of a sparsely allocated array of bytes indexed from zero to
infinity.1

In an object store environment, space is allocated by the
storage controller (i.e., the object store itself) and not by
overlaying software such as a file system. Users of an ob-
ject store,e.g., the file system, operate on data by perform-
ing operations such as creating an object, reading/writing
at an offset from the start of the object, and deleting the
object. In addition, all operations carry a credential, and
it is the responsibility of the object store to validate that
the user’s request carries a valid credential. This creden-
tial allows the storage to enforce different access rights for
different portions of a volume (i.e., on a per object basis).
Further, it eliminates the need to rely on an independently
administered physical security,e.g., zoning, masking,etc.

While there have been several years of research on ob-

1Without loss of generality, we assume an object store implementation
may place limitations on the legal offsets which can be used in a request,
e.g., requiring them to be block aligned.

ject stores (e.g., [5, 8, 12, 14, 15]) and there is an ongoing
standardization effort [27], object storage is still not widely
accepted. This is not because object stores are the wrong
solutions, but rather because they were invented before
their time. An object store inherently entails a paradigm
shift; hosts no longer communicate with control units via
SCSI block read and write requests but rather ask for off-
sets in an object. In addition, a host no longer handles space
management within a volume; rather this is handled by the
lower level storage controller. This entails changes to the
structure of a file system. For such a paradigm shift to be
justified, it needs to bring sufficient benefits. As long as
SANs were used as a means of essentially emulating direct
attached storage (i.e., no sharing) over private Fibre Chan-
nel networks, the benefits of an object store were insuffi-
cient to justify the cost of this paradigm shift. With the at-
tempt to truly leverage a SAN’s promise of non-mediated,
shared and inexpensive access to centrally managed stor-
age, an object store becomes essential.

In this context, we have been working on a prototype
object store. This work builds both upon the published lit-
erature as well as upon prior work of ours on Distributed
Storage Facility (DSF) [8].

The main contributions of the work presented in this pa-
per include:

• a systematic analysis of the benefits of an object store

• a novel, layered security model which separates con-
cerns of network and access security, allowing us to
leverage existing network security mechanisms

• a description of our pure software prototype object
store,Antara. Over 1 Gb EthernetAntaracan service
over 14000 4K I/O operations from a single client and
for larger requests,Antaracan sustain a bandwidth of
450Mb/s for a single client.

In the next section we describe the motivation for ob-
ject storage, prior to surveying related work in section 3.
We then present our systematic analysis of the benefits of
an object store in section 4. This analysis is based upon
our software implementation of a stand-alone object store
controller which we describe in section 5. Next, we de-
scribe our novel security model, which is intended to be
useful both in Fibre Channel and IP settings and which
leverages existing underlying security infrastructure. Fi-
nally, we present some preliminary performance results in
section 7 prior to concluding in section 8.

2. Motivation

As mentioned in the introduction, SANs promise to de-
mocratize storage by providing non-mediated, shared and

inexpensive access to storage. But the use of block storage
in SAN’s raises several issues. This section elaborates on
these issues.

The most significant issue raised is probably security
on a SAN. In discussing SAN security, we find it useful
to distinguish between two concepts:securityandprotec-
tion. Protection is always needed when there is shared ac-
cess to data. It enables defining the access control pol-
icy to the shared resources. The protection mechanism
provides defense against non-malicious “attacks,” such as
buggy clients, administrative errors,etc. One example of
why protection is needed is that if an administrator incor-
rectly configures LUN masking, a Windows NT client that
discovers a LU will assume it owns the LU, writing a sig-
nature on the LU, thereby causing a data integrity prob-
lem [30]. Protection, as a defense against errors is thus
needed even if we have a completely secured and trusted
infrastructure.

Security goes beyond protection in that it addresses in-
tentional attempts at unauthorized access. The security
mechanism’s role is to ensure that the system’s access pol-
icy is enforced, even in the presence of malicious attempts
to gain unauthorized access. When discussing security one
needs to make clear the type of attacks one wishes to pre-
vent. We elaborate on these details when we describe our
security model in section 6. Security is thus essential if the
infrastructure is not trusted.

Today’s SANs offer a very limited notion of security,
and thus, in theory, are very vulnerable for a wide range of
attacks. However, in practical terms, these attacks are not
common. Today’s SANs are Fibre Channel based. Since
Fibre Channel is not pervasive and hosts with Fibre Chan-
nel connections tend to be in protected machine rooms, the
practical opportunity for attacks is limited. However, the
expected adoption of IP-based storage is likely, in a practi-
cal sense, to exasperate the SAN security problem. IP net-
works are readily available, IP-connectivity is not limited
to protected machines, and unfortunately there is a range
of tools and techniques for IP-based security attacks.

Given the existing minimal and very coarse grain secu-
rity support, one must assume that the storage clients are
completely trusted. In addition, the mechanisms that do ex-
ist, such as zoning, LUN masking,etc., are hard to use and
related to the physical structure of the storage. Using these
mechanisms it is possible to control a host’s physical access
to storage, but if a host can access a volume, it has complete
access to all of the data on the volume. At best it is possi-
ble to provide all or nothing access to a LU for a given host.
Thus, attempts to share storage, as SANs promise, are also
likely to exasperate the SAN security problem.

Doing significantly better than this very coarse level of
access control in the context of today’s block storage de-
vices is not practical. There is no efficient way to describe

2

the protection scheme at a block granularity – there are sim-
ply too many actively used blocks. The control unit does
not know which blocks have the same security attributes,
e.g., belong to the same file; therefore, it would be neces-
sary to tell the control unit who is allowed to access each
block. The overhead involved in giving the control unit
information for each block (regardless of whether this is
done in-band or out-of-band) would be detrimental to per-
formance. Because of this “SAN security problem,” most
of the research on object storage has been driven by the
need to provide SAN security; for a discussion of related
work see section 3.

A second issue that arises when trying to fully lever-
age a SAN is scalability in terms of the number of storage
clients. Scalability is typically not an issue unless hosts
share access to volumes. However, shared access is one of
the touted benefits of a SAN. Shared access requires co-
ordination, and coordination can lead to scalability prob-
lems. For example, file systems must coordinate alloca-
tion of blocks to files and for shared read-write access hosts
must coordinate usage of data blocks with other hosts.

In SAN file systems built upon a block control unit,
space allocation is managed by some form of metadata
server [6, 18, 26], typically in concert with smart client in-
volvement. By having this metadata server run on a clus-
ter and partitioning responsibility between the nodes of the
cluster, a good degree of scalability can be achieved. How-
ever, there are limits. This coordination can incur several
costs including false contention between hosts allocating
space from different logical units and additional communi-
cation. This communication is both between the hosts and
the metadata server and between the nodes of the metadata
server (assuming the metadata server is clustered) to ensure
metadata consistency. In addition, since a metadata server
runs on a traditional compute platform,i.e., one without
a non-volatile RAM, there is either additional overhead to
harden metadata updates or a risk of (meta)data loss. By
contrast storage controllers (typically) have some form of
non-volatile RAM (e.g., to support fast writes). We can
leverage this support to harden metadata if the storage con-
troller performs space allocation.

A final issue in today’s SANs with block storage de-
vices is end-to-end management. When data was directly
attached to the host that generated and used the data, end-
to-end management was easy since everything was in a sin-
gle box. However, with block storage as an independent en-
tity, end-to-end management of individual data units is dif-
ficult; we would like to support functions such as quality-
of-service for individual files and migration/replication of
individual files. However, block control units only recog-
nize blocks and logical units. Thus, the problems facing
storage management are similar to the ones that arise in
security: management at the level of a single block is not

practical, since there are simply too many blocks, and man-
agement at the logical unit granularity is too coarse grain,
since a given logical unit may contain data that requires
different policies.

3. Related Work

Although object stores have received significant atten-
tion in the past few years, to date, there is no extensive lit-
erature on this topic. The trend towards network-attached
storage was envisioned more than ten years ago [3, 16], but
the concept of a higher level of abstraction for networked
storage gained momentum with the paper by Garth Gib-
son,et al., [13] (and their more detailed report [14]) that
describes in detail the NASD operations. This work served
as the basis for the first standardization effort [27] of an Ob-
ject Storage Device specification. Since this work by Garth
Gibson’s group at CMU, there have been several projects
which have included object storage. Unfortunately, each
group has used this term in a somewhat different way.

One project which includes an object store is Lustre.
Lustre [18] is a SAN file system that uses an object store
as its storage infrastructure. Unlike the emphasis of our
work which is initially on SAN security, the emphasis of
the Lustre team in using an object store is to achieve im-
proved scalability for a cluster/SAN file system. The spec-
ifications of Lustre’s Object Store Target (OST) [5] con-
tains the same base functionality as the command set of the
T10/OSD standard [27]. There are, however, some substan-
tive differences. Due to their initial focus on scalability, the
OST command set does not yet include a credential param-
eter. In addition, the command set provides several exten-
sions which make the OST closer to an active disk [23].
For example, the OST specification includes aniterate
function which allows applying a function to a group of
objects. The implementation of OST is layered on top of
existing file system implementations,e.g., [9, 22].

DSF [8], a predecessor of our current object store
project, presents a novel architecture for file systems,
where space allocation is delegated to the storage subsys-
tem. A newallocate and writeoperation writes an extent of
blocks and returns the address where the data was written.
DSF did not focus on security, and its storage abstraction
remained close to the block storage abstraction. However,
the first implementations of the current object store, relied
on techniques developed in DSF to guarantee metadata sta-
bility and consistency.

Centera [7] provides a subset of the characteristics of
object stores. Centera supports fixed content, such as med-
ical images, streaming audio/video, e-mail,etc.Objects in
Centera are streams of bytes paired with metadata. When
an application creates and writes an object, Centera gener-
ates a key based on the object’s contents and the metadata

3

(including the creation date, filename,etc.) which is re-
turned to the application. This key serves several purposes.
First, instead of a hierarchical directory as maintained by
a file system, Centera maintains a flat mapping of keys to
objects,i.e., keys serve the role of identifiers. Since these
keys are derived from the contents of an object and objects
are immutable, the key can be used by the application to au-
thenticate that the object returned is indeed the object that
was stored by the application. In addition, since identi-
cal content results in identical keys, Centera can eliminate
duplicates of objects, and it can simplify management of
object replication. However, this approach of deriving an
object’s identifier from its content comes at a price. Since
all objects in Centera are immutable, and the objects data
must be completely available when the object is created (in
order to calculate the object’s key), the Centera solution is
limited to fixed data. In other words, there is no need for
Centera to support operations such aswrite , truncate ,
etc.

Somewhat further from our concept of an object store, is
LegionFS [29], and its commercial follow-on Avaki. This
is another example of an object-based file system. Legion
focuses on providing a set of infrastructure and services
for Grid computing. It defines an object model that encap-
sulates not only storage, but also users, hosts, schedulers,
etc. In addition, a location-independent naming structure
allows objects, including the BasicFileObject, to migrate
transparently. However, LegionFS’s definition and usage
of an object-based storage are at a much higher level than
the object store defined in this paper.

In addition to looking at related work from the perspec-
tive of overall functionality, we look more specifically at
the problem of security for a storage network. The problem
of protecting a network accessible storage system in a non-
trusted environment has received much attention lately; a
comprehensive survey can be found in [21].

Gobioff [15] in his thesis and the Network Attached Se-
cure Disk architecture (NASD) system [11] base their ac-
cess control mechanism on basic capability cryptographic
primitives, which allow synchronous enforcement of secu-
rity policy with asynchronous involvement of the server.
Unlike our layered approach, they use the credential for se-
curing the transport layer as well as for authorization pur-
poses.

Authenticated Network-Attached Storage [20] provides
an architecture which mutually authenticates the network
disks and clients. It is based on cryptographic one-way
hash functions, mainly for performance reasons, and does
not require additional key management schemes beyond
the existing authentication mechanisms within the system.
It is mainly concerned with determining the client’s access
rights.

In [19], a security system for network-attached storage

called SNAD is developed which stores and transfers en-
crypted data, and decrypts it only at the client. Despite the
extensive use of encryption this system reports a reasonable
performance overhead.

4. What is an Object Store

Unfortunately, as can be seen from the prior section,
object storeis used by different people to mean different
things. It is thus necessary to define what we mean. We
view an object store as analogous to a logical unit (LU).
Unlike a traditional block-oriented logical unit which pro-
vides access to an array of unrelated blocks, an object store
allows access viastorage-objects. A storage-objectis a vir-
tual entity that groups data considered by a client to be re-
lated. It is similar to a byte-stream file in a flat file-system
with a conceptually unlimited size. Space for a storage ob-
ject is allocated on demand by the object store control unit,
i.e., sparse allocation is supported.

The collection of storage-objects,i.e., an object store,
forms what is, essentially, a primitive flat file system. There
is no name space – just a flat ID space. The object store pro-
vides security enforcement for access to the storage-objects
it contains, but it does not provide security management,
i.e., the object store does not determine who is allowed to
access an object – it only enforces access rights determined
by some external security administrator. Initially, we ex-
pect the most common use of an object store to be as the
underlying infrastructure for secure SAN file system; even-
tually, we believe there will be additional uses.

An object store provides a level of virtualization and ag-
gregation; more significantly it provides data path security.
Thus, it is only natural for an object store to be in the data
path. We believe that the best place to realize an object
store is on a storage control unit. A storage control unit
is already in the data path and typically has some form of
non-volatile memory and a cache which we can leverage
for metadata. Control units also provide sufficiently flex-
ible programming environments to simplify the develop-
ment of microcode to support an object store. As shown in
figure 1, a control unit can provide both object and block
interfaces and export multiple object stores. An alterna-
tive to developing an object store in a control unit would be
for disk drives to directly support an object store interface.
While such an approach is possible, we believe that the re-
strictions inherent in drive controllers (i.e., limited cache
memory, restricted development environment,etc.) will fa-
vor control unit based implementations for the foreseeable
future.

An object store secures all operations with a credential
which includes the set of operations the client is allowed to
perform and an integrity code. Simply providing a creden-
tial on each operation, even if the credential is not crypto-

4

Figure 1. Location of an Object Store in a SAN

graphically protected, provides protection since (due to the
integrity code) it is not possible to accidentally present a
valid credential for an operation. To provide security, how-
ever, some form of cryptographic protection on the creden-
tial is required. Object store security provides increased
protection/security at level of objects rather than whole vol-
umes, thus allowing non-trusted hosts to sit on the SAN
and allowing shared access to storage without giving hosts
access to all data on volume. In addition, since hosts do
not directly process or access allocation metadata, we pro-
vide an additional level of protection since it is not possible
for misconfigured or buggy hosts to destroy the allocation
metadata.

While different proposals for object storage vary in the
details of the functions they provide, in almost all propos-
als, an object store provides (at least) the following basic
functionality:

• Create or delete an object

• Read from or write to a byte range within an object

• Format, get object store info, . . .

After an object is created, the object is identified by an
object ID (OID). We assume that after an object is created
it is the client’s responsibility to remember the OID. The
client must present this OID to read or write the object. To
be concrete, figure 2 shows the abstract flow for a write op-
eration implemented in an object store control unit sitting
on top of a set of conventional block devices.

Parameters: Object Store ID, OID,
Offset,Length, Credentials, Data

• Receive request

• Validate credentials

• Find allocation data for indicated
object

• Determine if the indicated range
is already bound to a collection of
underlying LBAs

• If not already bound

– Determine the mapping

– Update the metadata

• Destage the data to the indicated
LBAs

Figure 2. Basic Abstract Flow of Write

5. Antara

Antara is our prototype implementation of an object
store as a stand-alone control unit. Clients communicate
with Antara using the Antara protocol, which is simi-
lar to the core functionality of the T10 proposal [27], sup-
porting commands to open/close session, create/delete ob-
ject, read/write/append/truncate, format,etc.The protocol
transport is IP, but our design is fairly transport indepen-
dent; supporting Fibre Channel should require changing
only Antara’s input and output modules (see below).

Any data or metadata operation submitted toAntara is
guaranteed to be recoverable.Antara realizes this guar-
antee by using journaling techniques to enable it to quickly
restore a consistent state after a failure. The current im-
plementation ofAntara, as a control unit, assumes a non-
volatile store, which it leverages to provide metadata recov-
erability.

This section describes the main design points ofAn-
tara, focusing on the metadata data-structures and control
flow. We also describeAntara’s allocation strategy, which
is aimed at ensuring consecutive allocation for individual
objects.

5.1. Metadata

In Antara, we map an object store to a single underly-
ing block volume, where this volume contains the user data
as well as the object store’s metadata. In other words, each
block in an object maps to a logical block on the underly-

5

Figure 3. Antara Metadata

Figure 4. Structure of Antara

ing block-oriented device. The main use of the persistent
metadata used byAntara is to support this mapping.

The metadata forAntaraconsists of the following struc-
tures (which are shown in figure 3):

• free-space bitmap, organized as a buddy list [1]. Un-
like traditional implementations of buddy lists, our
buddy list is truncated,i.e., it does not use granular-
ities ranging from a single unit to the entire range, but
rather stops at the granularity of the maximum extent
we allocate (currently 128K).

• object catalog which maps from OID to per-object
metadata via an extensible linear-probe hash table.
Shared/exclusive locks, created on-the-fly, allow lock-
ing only specific entries of the hash table.

• object metadata which includes the object’s length and
a “pointer” to the block-number table for the object

• block-number table which maps from offset in the ob-
ject to the extents used for the object’s storage. For
small objects this is implemented as a dynamic, linear-
probe hash table, while larger objects make use of

a B-tree. The block-number table implementations
were chosen to minimize page faults. For large ob-
jects, B-trees were chosen based on similar choices in
databases. For small objects, an entire B-tree page is
inefficient in terms of space and time (due to the use of
an integral number of pages, more complicated algo-
rithms than ones using simpler structures such as hash
tables,etc..).

5.2. Control Flow

The general flow ofAntaracan be viewed conceptually
as a pipeline consisting of the following modules:

I-Module communication input, connection management

S-Module security and protection

C-Module control and dispatching

L-Module lookup, meta-data tables, locking mechanisms,
and log of meta-data

RW-Module read-write of data

6

1. (I) Receive control block, determine needed buffers, allocate and receive data into buffers

2. (C) Mark the request as running; Delay this request if it clashes with other operations

3. (C,I) Notify OS ready to receive the next request from the client

• Additional requests handled in parallel

4. (S) Perform protection and security checks (e.g. proper session, credentials, etc.)

5. (L) Perform necessary lookups (and/or allocations in case of writes)

• Put allocation information in the request

6. (RW) Read/write the data from/to the cache

• The cache manages a collection of buffers; reading/writing the data from/to cache involves pointer manipulation.

7. (L) Mark the request as done

• Allows delayed requests to start, e.g., read-write conflict although read response may need to wait for log complete

8. (L) Log the request (no logging is required for read)

• Ensures hardening of the allocation information

9. (L) Mark the request as logged (this is a no-op in the case of read)

• Allows delayed requests to complete

10. (O) Send the reply

11. (L) Mark the request as sent

12. (O) Deallocate buffers used for the request

Figure 5. Flow for Read and Write in Antara

O-Module communication output

In most cases, the same operating system thread handles
multiple stages. To minimize context switch overhead,An-
tara employs a run-to-completion model; a new request
is processed only if the mainAntara thread cannot make
progress on the current request.

Figure 4 shows the communication between these mod-
ules and figure 5 shows how these modules communicate
to implement an I/O operation. As the figures show, we
can have multiple active requests in the pipeline at any
point in time. The L-module is outside of the main flow
since the metadata describing the layout of the object on
the device is accessed at multiple points during command
processing. For instance, prior to dispatching a write to
the RW-Module, the control module must determine if the
write requires new storage to be allocated. This allocation
is logged, however, only after the RW module has obtained
and hardened the user’s data. We delay hardening the allo-
cation information to avoid failure scenarios in which the

allocation is recorded but the allocated blocks actually con-
tain old data,i.e., data not belonging to this user. One ad-
ditional point to note is thatAntara provides a zero copy
implementation (other than copies by the network infras-
tructure).2

We now look at figure 5 in more detail; this figure shows
the flow for a read or write operation. In the first step the
request is received from the network and data associated
with the request is placed in transient buffers. These buffers
are obtained from a pool of buffers; buffers are managed by
reference counting. In theAntara implementation, all data
received is placed in a new buffer, and the cache works by
changing pointers to the buffer that currently contains the
data.

After the command is received by the input module, the
control module determines if the command can execute;
we delay execution of a command only if executing this

2Since we have chosen to implementAntara as a user process over
IP to allow easier experimentation, we do have the copy inherent in user
mode access to the network.

7

command in parallel with a currently executing command
could cause a lack of integrity forAntara’s metadata. Af-
ter this initial processing, we notify the operating system
that we are ready to receive additional requests from the
network. If new requests are available, the operating sys-
tem will asynchronously notify the mainAntara thread,
which will retrieve the request when it is no longer able to
progress with the request it is currently processing.

The next step, step 4, is performed by the security mod-
ule which validates this is a legal request. The L-module
next performs the metadata translation to map from an
OID, offset and length to a (set of) extent(s) in the underly-
ing block store. We then transfer the data associated with
the request to/from the cache which is managed by the RW
module.

After the data is transferred to the cache, certain con-
flicting operations are allowed to start execution. For in-
stance if we had aread operation that was trying to ac-
cess an offset just allocated by awrite , we can allow the
read to begin executing. We cannot, however, allow the
read to return data to the host until the metadata associated
with this new allocation has been hardened in step 8. After
we have logged these metadata updates we allow delayed
requests, such as the read, to complete.

After sending any results to the host, we clean up the
resources used by the processing of this request.

5.3. Allocation

One way an object store can provide better management
is by internally leveraging the knowledge it has of which
blocks are related and allocating these blocks according
to a policy which is appropriate for the type of object.3

One such policy, whichAntara currently implements, is
to consecutively allocate blocks of an object; another pol-
icy which one might consider is striping.

Implementing such a policy is difficult since the object
store does not know what allocation requests,i.e., writes to
unallocated offsets, will be executed in the future, and with-
out knowing the future it is hard to determine if a specific
allocation decision is appropriate. There are two orthogo-
nal ways to address this problem.

First, we can delay the decision of where to allocate a
particular offset. Instead of binding a block in an object to
a block on an underlying device at the time the object store
processes the write, we can take advantage of the control
unit’s non-volatile store and have the implementation of the
write operation store the data in the cache indexed by its
OID and offset. At some later point in time,e.g., when it
is necessary to destage the data to the underlying block de-
vice, we can bind the object offsets to actual blocks on the

3We assume the policy to be applied will be specified by a mechanism
beyond the scope of this paper.

device. However, since we have delayed this binding, the
binding will be performed in the context of more informa-
tion about how the host is using the object,i.e., we know
all the writes that occurred between the time this data was
written and the time of the destage.

The second approach to addressing the on-line nature
of the problem is to maintain a cache of objects which are
currently active for allocation. With each of these objects
we can associate a collection of blocks which will lead to
optimal allocation assuming this is the only active object. If
this cache is managed in a least recently used manner and is
sufficiently large, we can achieve good allocation behavior.
The currentAntara implementation uses this approach.

6. Security

Unmediated host access to a control unit raises new
security concerns: malicious parties forging messages or
tampering with message contents, replaying or recording
messages, spoofing a user’s identity or denying service of
valid requests. Thus, in order to achieve a level of security
comparable to traditional systems that do not offer shared
storage, the storage server needs to take an active role in
the system’s security mechanism.

Our goal is to create a security mechanism capable of
enforcing arbitrary access control policies, such as, for ex-
ample, the ones used by Windows or UNIX file systems.
The protection mechanism should be able to operate in a
secure-mode for environments in which hosts cannot be
trusted and security against network attacks is required,
as well as in a (cheaper) protection-only mode in secure
environment (e.g., a “glass house”) where only protection
against application errors is required. In addition, the se-
curity mechanism should have an acceptable performance-
overhead and be easy to deploy and manage. This section
gives a high level overview of our security model; [2] gives
a more comprehensive description, including implementa-
tion issues and proof of correctness.

6.1. Solution Outline

Our security model assumes that the system is com-
prised of three types of logical entities: (i)hosts, which ini-
tiate the I/O requests, (ii)Object Store (ObS) serverswhich
expose an object store interface and directly manipulate the
storage, and (iii)Admin, the security administrator which
is in charge of authorizing hosts requests. Our trust model
assumes that users trust their own host’s operating system
(but not that of other hosts), and that the Admin and the
ObS servers are trusted.

Our solution is credential-based: before a host can
send a command to an ObS-server it must obtain a suit-
able credential from the Admin. Protection enforcement

8

Figure 6. Security protocols: (a) Capability structure (b) Credential structure. EKE(K′) is the credential
secret (K′) encrypted with KE - the encryption key. MAC is computed with KM.

is achieved by the cooperation of the Admin and the ObS
server. The Admin authenticates the client, authorizes re-
quests according to the system access control policy, and
generates credentials. The ObS-server validates that the
presented credentials suffice for the requested operation
and that the credentials were neither forged nor modified.
The credential is cryptographically hardened by two se-
cret keys shared between the ObS and the Admin:KE -
an encryption key andKM - a message authentication code
(MAC) key. This pair of keys is periodically refreshed.

For non-secure environments, our protection mecha-
nism must be coupled with a mechanism that secures the
transport. Otherwise, it could be vulnerable to malicious
message modification, replay attacks, and eavesdropping.
For IP-networks, we use for this purpose the standard, off-
the-shelf, IPSec protocol [17]; although, we could in theory
use any other protocol that provides secure channels. For
Fibre Channel, we currently assume a protected network
although due to our layered approach we should be able to
directly take advantage of the work on Fibre Channel secu-
rity when it is completed [28].

Note that our proprietary credential-based protocol for
authorization is definedon topof the communication layer.
Thus, we separate the mechanisms for transport security —
mechanisms which are widely studied, well understood and
tested — from our proprietary mechanisms used solely for
access control. This is where we diverge from the previ-
ously suggested credential-based approach of [15] and oth-
ers that bind the transport security with the enforcement of
access control.

6.2. Capabilities and Credentials

As stated above, a host accompanies each request it ini-
tiates with acredentialthat attests that the host is autho-

rized to perform the request. In essence, acredentialis a
cryptographically hardenedcapability. Thecapability(see
figure 6) encodes the host permissible operations. There
are two types of capabilities: object-capability and ObS-
capability. An object capability contains operations that
can be applied on a specific object,e.g., read or write. An
ObS-capability includes operations applicable to an entire
ObS-server,e.g., format, and operations on objects, that are
applicable toany object in the ObS-server.4 We note that
the correctness of our protocol is independent of the details
of the structure of the capability.

Technically, thecredentialis comprised of (i) apublic
credential– a capability, the credential secretK′, encrypted
key KE, and a MAC and (ii) aprivate credential– the cre-
dential secret (K′). The credential secret is unique for every
credential; it is chosen by the admin, encrypted withKE

and embedded in the credential asEKE(K′). The integrity
and authenticity of the public credential is assured by the
MAC calculated with the authentication keyKM shared be-
tween the ObS-server and the admin. Note that the private
credential must be provided secretly to the host since it is
not encrypted. The host does not send the private creden-
tial to the ObS-server, rather it uses it to convince the ObS-
server that it received the credential in a legitimate way, as
explained in Section 6.3.3.

6.3. Security protocols

From the security mechanism perspective, a host wish-
ing to perform an I/O request should follow the following
steps:

1. The host authenticates to the Admin via an exist-

4ObS-capabilities may be used to expedite administrative operations,
e.g., backup.

9

Figure 7. Security protocols: (a) Host-Admin; (b) Admin-ObS protocol; (c) Host-ObS

ing mechanism (on behalf of the user running on the
host).5

2. The host requests a credential from the Admin for a
particular operation.

3. The Admin sends a credential to the host.

4. The host sends request(s) to the ObS with the obtained
public credential along with a proof that it knows the
credential secret.

5. The ObS-server verifies the credential (and the proof)
and performs the operation.

Our security solution (see figure 7) is composed of three
protocols: (i) a Host-Admin Protocol, initiated by the host

5Our solution does not impose a particular user authentication mech-
anism and can utilize any mechanism available in the system,e.g., Ker-
beros, login/password, PKI certificates, etc.

whenever it needs to obtain a new credential, (ii) an Admin-
ObS Protocol used to establish and refresh their shared (se-
cret) keysKE andKM (see 6.1), and (iii) a Host-ObS Pro-
tocol used by the ObS to validate that the requests it gets
from the host were authorized by the Admin. Below is an
outline of our security protocols. A detailed description can
be found in [2].

6.3.1. The Host-Admin Protocol This protocol, de-
picted in figure 7(a), is rather straightforward: the host asks
the Admin for a credential for a specific operation on an
object in the name of an already authenticated user. The
Admin checks that a user is allowed to perform the oper-
ation according to the protection policy and generates an
appropriate credential. Note that the Admin is required to
generate a unique secret, and perform one encryption oper-
ation and one MAC operation for every credential it gener-
ates. In addition, the Admin must send its reply to the host

10

on an encrypted channel since the private credential, which
contains the credential secret, is not encrypted.

6.3.2. The Admin-ObS Protocol Recall that our solu-
tion requires that the ObS-server and admin share two keys
which are refreshed periodically: an encryption keyKE

and an authentication (MAC) keyKM. This protocol, de-
picted in figure 7(b), is basically a key-exchange protocol
intended to refresh these keys (indicated by the ’Ver’, the
keys version number). This protocol runs over an encrypted
channel; after a mutual authentication, the Admin sends to
the ObS a new pair of keys (KE andKM) followed by an
acknowledgement from the ObS-server.

6.3.3. The Host-ObS Protocol This protocol, depicted
in figure 7(c), is the core of our solution. The protocol is
comprised of three stages:

handshake The host requests an ‘open security window’
with the ObS-server. The ObS-server responds with
a randomly chosen channel nameChannelID(which
the ObS associates with the ‘session’.)

in sessionA host sends a request to the ObS-server, along
with a public credentialCpub and a validation tag
V = MACK′(ChannelID). The ObS-server first ver-
ifies that the requested operation is permitted by the
credential. If so, it verifies the authenticity of the cre-
dential (verifying the credential MAC using the shared
keyKM). Finally, by extractingK′ from the credential
(using the shared keyKE) it verifies the validation tag
V. If any of the checks fail, the request is denied; oth-
erwise it performs the request. This is repeated for
multiple requests (possibly requiring new credentials)
as long as the security window is intact.

logout The host closes the security window with the ObS-
server. The ObS-server clears the security window
from its internal tables and acknowledges.

Note that the host can send many requests to the ObS-
server during the “in session” stage, thus the handshake
cost is amortized over many requests,e.g., the entire host-
ObS session. A key property of our solution is that the cre-
dential verification is fast and involves only symmetric key
operations, hence the critical path remains short. To fur-
ther reduce the incurred security costs, we use a capability
cache.

7. Results

While our work is just beginning, we have made some
initial performance measurements. We have measured the
performance of Antara serving I/O requests on a 100%

cache hit workload. We ran our tests runningAntara on
a Pentium-4, 2.4Ghz processor running Windows 2000. In
our experiments, we ran two clients (also running Windows
2000); the network was a 1 Gb Ethernet. In these tests, we
were able to process over 14,000 object store reads per sec-
ond. We observed that the bulk ofAntara’s CPU time was
spent in processing the network communication protocol.

To estimate the performance overhead of the security
mechanism, we measured the cost of verifying a creden-
tial. This operation is critical to performance since it oc-
curs on the data path. Running our prototype implementa-
tion on a 2.0 Ghz Pentium-4 machine with 1GB memory
under RedHat Linux (2.4.18) and using RSA BSafe-C6.0
library [24] for the cryptographic primitives, we were able
to verify 20,000 credentials in a second (without a creden-
tial cache). Adding a credential cache based on the marker
algorithm [10] can improve the verification rate by up to a
factor of 50. In practical terms, given a hit in the creden-
tial cache, security accounted for less than 5% ofAntara’s
overhead.

8. Conclusions

We have described our design and implementation of an
object store along with a mechanism for providing security.
Our security mechanism is novel in that it divorces trans-
port security (where we rely upon existing well-studied
mechanisms) from the protocol for ensuring only autho-
rized users are allowed access.

To conclude, we believe much work is still required.
Object stores will almost certainly happen; it is just a ques-
tion of when. As we described in section 2, we believe we
are now at the point where the ability to leverage the ben-
efits of an object store to democratize the access to data is
sufficiently significant to justify the cost of the paradigm
shift. It is thus imperative to understand how to build a
high performing object store which provides a range of the
potential benefits. We are continuing our research to this
end.

Acknowledgements: We would like to thank Randall
Burns, David Pease, Ralph Becker-Szendy and Miriam
Sivan-Zimet of the IBM Storage Tank team.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.Data Structures
and Algorithms. Addison-Wesley, Reading, MA, 1983.

[2] A. Azagury, R. Canetti, M. Factor, S. Halevi, E. Henis,
D. Naor, N. Rinetzky, O. Rodeh, and J. Satran. A two lay-
ered approach for securing an object store network.IEEE
International Security In Storage Workshop, 2002.

[3] A. D. Birrel and R. M. Needham. A universal file server.
IEEE Transactions on Software Engineering, September
1980.

11

[4] P. J. Braam. The Lustre storage architecture. Tech-
nical report, Cluster File Systems, Inc., 2002.
http://www.lustre.org/docs/lustre.pdf.

[5] P. J. Braam and A. e. Dilger. Object based storage. Techni-
cal report, Stelias Computing, 1999.

[6] R. C. Burns. Data Management in a Distributed
File System for Storage Area Networks. PhD thesis,
University of California, Santa Cruz, March 2000.
http://www.almaden.ibm.com/cs/storagesystems/stortank-
/rbdissert.pdf.

[7] EMC Centera, content addressed storage, product
description. http://www.emc.com/pdf/products/centera/-
centeraguide.pdf, 2002.

[8] Z. Dubitzky, I. Gold, E. Henis, J. Satran, and D. Sheinwald.
DSF: Data sharing facility. Technical report, IBM Haifa
Research Labs, 2002.

[9] Ext2fs home page. http://e2fsprogs.sourceforge.net/ext2.html.
[10] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D.

Sleator, and N. E. Young. Competitive paging algorithms.
J. Algorithms, 12(4):685–699, 1991.

[11] G. Gibson, D. Nagle, K. Amiri, J. Butler, F. Chang, H. Go-
bioff, C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A
cost-effective, high-bandwidth storage architecture.Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages
92–103, 1998.

[12] G. Gibson, D. Nagle, K. Amiri, F. Chang, E. Feinberg,
H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg, and
J. Zelenka. File server scaling with network-attached secure
disks.Proceedings of the ACM International Conference on
Measurement and Modelling of Computer System, Seattle,
WA, June 1996.

[13] G. Gibson, D. Nagle, K. Amiri, F. Chang, H. Gobioff,
E. Riedel, D. Rochberg, and J. Zelenka. Filesystems for
network-attached secure disks, 1997.

[14] G. A. Gibson, D. P. Nagle, K. Amiri, F. W. Chang, E. Fein-
berg, H. G. C. Lee, B. Ozceri, E. Riedel, and D. Rochberg.
A case for network-attached secure disks. Technical Report
CMU–CS-96-142, CMU, 1996.

[15] H. Gobioff. Security for High Performance Commodity
Storage Subsystem. PhD thesis, CMU, July 1999.

[16] R. H. Katz. High-performance network- and channel-
attached storage.Proceedings of the IEEE, 80(8), August
1992.

[17] S. Kent and R. Atkinson. Security archi-
tecture for the internet protocol, RFC 2401.
http://www.ietf.org/rfc/rfc2401.txt, Nov. 1998.

[18] Lustre home page. http://www.lustre.org.
[19] E. Miller, D. Long, W. Freeman, and B. Reed. Strong secu-

rity for network-attached storage.Proceedings of the FAST
2002 Conference on FIle and Storage Technologies, Jan-
uary 2002.

[20] B. C. Reed, E. G. Chron, R. C. Burns, and D. D. Long.
Authenticating network-attached storage.IEEE Micro,
20(1):49–57, January 2000.

[21] E. Reidel, M. Kallahalla, and R. Swaminathan. A frame-
work for evaluating storage systems security.Proceed-
ings of the 1st conference on File and Storage Technologies
(FAST), January 2002.

[22] H. T. Reiser. Reiserfs. http://www.namesys.com.
[23] E. Riedel, G. A. Gibson, and C. Faloutsos. Active stor-

age for large-scale data mining and multimedia. InProc.
24th Int. Conf. Very Large Data Bases, VLDB, pages 62–
73, 1998.

[24] RSA BSAFE(R) - CryptoC - cryptographic components for
c reference manual - version 6.0, December 2001.

[25] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and
E. Zeidner. iSCSI. IETF, draft-ietf-ips-iscsi-17 edition,
September 2002.

[26] SGI. SGI CXFS: A High-Performance, Multi-
OS SAN Filesystem from SGI, May 2002.
http://www.sgi.com/Products/PDF/2691.pdf.

[27] Object based storage devices command set (OSD).
http://www.t10.org/drafts.htm. T10 Working draft.

[28] Fibre channel - security protocols (fc-sp).
http://www.t11.org/.

[29] B. S. White, M. Walker, M. Humphrey, and A. S.
Grimshaw. LegionFS: A secure and scalable file system
supporting cross-domain high-performance applications. In
Proceedings of the IEEE/ACM Supercomputing Conference
(SC2001), Nov 2001.

[30] H. Yoshida. LUN security considerations for storage area
networks. Technical report, Hitachi Data Systems, 1999.

12

