
Design of the iSCSI Protocol

Kalman Z. Meth, Julian Satran
IBM Haifa Research Laboratory

Haifa, Israel
{meth,satran}@il.ibm.com

 Abstract

The iSCSI protocol enables accessing SCSI I/O
devices over an IP network. TCP is used as a transport
for SCSI I/O commands. We describe the design
considerations and decisions in defining the iSCSI
protocol: why we use TCP, how multiple TCP
connections can be used to increase performance and
reliability, why we require allegiance of a command to
a particular TCP connection, the importance of Direct
Data Placement, various levels and complexity of error
recovery, security and naming issues.

1.0. Introduction
The iSCSI protocol [1] is a transport for SCSI over

TCP/IP [2] [3]. SAM-2 [4] defines an architecture
model for SCSI transports, and iSCSI defines such a
transport on top of TCP/IP. Other SCSI transports
include SCSI Serial [5] and Fibre Channel Protocol
(FCP) [6] [7]. Until recently standard IP protocol infra-
structure (i.e. Ethernet) could not provide the necessary
high bandwidth and low latency needed for storage
access. With the recent advances in Ethernet technol-
ogy, it is now practical (from a performance perspec-
tive) to access storage devices over an IP network. 1
Gigabit Ethernet is now widely available and is com-
petitive with 1 and 2 Gigabit Fibre Channel, and 10
Gigabit Ethernet will soon also be available. Similar to
FCP, iSCSI allows storage to be accessed over a Stor-
age Area Network (SAN), allowing shared access to
storage. A major advantage of iSCSI over FCP is that
iSCSI can run over standard, off-the-shelf network
components, such as Ethernet. A network that incorpo-
rates iSCSI SANs need use only a single kind of net-
work infrastructure (Ethernet) for both data and storage
traffic, whereas use of FCP requires a separate kind of
infrastructure (Fibre Channel) for the storage. Further-
more, iSCSI (TCP) based SANs can extend over arbi-
trary distances, and are not subject to distance
limitations that currently limit FCP. See FIGURE 1.
FIGURE 1. Classic SAN vs. iSCSI

iSCSI defines its own packets that are referred to as
iSCSI Protocol Data Units (PDUs). iSCSI PDUs consist
of a header and possible data, where the data length is
specified within the iSCSI PDU header. Since iSCSI
runs on top of TCP/IP, we have a layering of protocol
levels. An iSCSI PDU is sent as the contents of one or
more TCP packets. The protocol layering looks as
depicted in FIGURE 2.

FIGURE 2. Protocol Layering

Since iSCSI is designed to run on an IP network,
iSCSI can take advantage of existing features and tools
that were already developed for IP networks. The very
use of TCP utilizes TCP’s features of guaranteed in-
order delivery of data and congestion control. IPSec [8]
can be leveraged to provide security of an iSCSI SAN,
whereas a new security mechanism would have to be
developed for Fibre Channel. SLP (Service Location
Protocol) [9] can be used by iSCSI to discover iSCSI

Classic SAN

Data IP
Network

Storage
Fibre Channel

Network

Clients

Servers

File
HTTP

Database

Storage

Database
Server

File
ServerWeb

Server

iSCSI

Clients
File

HTTP

Database

Data and Storage
IP Network

Database
Server

File
Server

Web
Server

Storage

Ethernet
Header

IP
Header

TCP
Header

iSCSI
Header

iSCSI
Data

entities on the network. Thus in addition to iSCSI run-
ning on standard, cheaper, off-the-shelf hardware, iSCSI
also benefits from using existing standard IP based tools
and services.

2.0. Design issues
Some of the design decisions were strongly influenced

by the design team’s perception of how iSCSI would
eventually be used. iSCSI was designed to allow efficient
hardware and software implementations to access I/O
devices attached over any IP network. iSCSI was also
designed for a wide variety of environments and applica-
tions including local and remote storage access, local and
remote mirroring, local and remote backup/restore. It was
assumed that TCP/IP acceleration adapters and even
iSCSI adapters would become prevalent, and it would be
strongly desirable to define the protocol to allow high-
performance adapter implementations. Mechanisms were
therefore included to overcome various anticipated prob-
lems, such as maintaining high bandwidth despite fre-
quently dropped packets. Care was taken to not limit the
application of iSCSI to disks; mechanisms are provided
for various types of SCSI devices, especially tapes, for
which it is inconvenient and perhaps prohibitive to cancel
and restart commands. Effort was made to exploit exist-
ing IP protocol suite infrastructure whenever possible,
thus avoiding the need to re-design all levels of the proto-
col stack and related tools.

2.1. Why TCP?

Although attempts have been made to define SCSI
over UDP, SCSI over IP, and even SCSI directly over
Ethernet, the designers of iSCSI decided that it was best
to define SCSI over TCP. There are several reasons to use
TCP:

• TCP is a reliable connection protocol that
works over a variety of physical media and inter-
connect topologies, and is implemented on a wide
variety of machines.
• It is field proven and scalable, offers an end-to-
end connection model independent of the underly-
ing network.
• It is probably going to be well supported on
underlying networks for some time in the future.

TCP has a mechanism to acknowledge all TCP pack-
ets that are received and to resend packets that are not
acknowledged within a certain time-out period. Thus
iSCSI packets sent over TCP that may get lost during
delivery are automatically resent by TCP. If iSCSI were

defined on top of a protocol that is not reliable and in-
order, then iSCSI would have had to provide these ser-
vices itself, since SCSI traffic must be reliable and is
expected to be ordered. We would also have to provide a
congestion control mechanism, which is also already pro-
vided by TCP. TCP was chosen also over the SCTP pro-
tocol [10] because of TCP’s wide acceptance and its
proven track record over many years. Although TCP has
additional features that are not needed for transport of
SCSI in general, the designers of iSCSI felt that the bene-
fits of using an existing, well-tested and understood
transport like TCP justified its use.

2.2. Sessions with multiple connections

The iSCSI entity corresponding to an I_T_NEXUS
(Initiator - Target nexus) is an iSCSI session. Since TCP
is used as the transport for iSCSI, iSCSI initiators are
connected to iSCSI targets using TCP connections. It
might be impossible to achieve the full bandwidth capa-
bility of the underlying physical transport by using a sin-
gle TCP connection (possibly due to the TCP window
size and the round-trip-time of TCP acknowledgements
over long distances). Some protocols, like SCTP, auto-
matically and transparently distribute their traffic over a
number of connections in order to achieve the full band-
width. There may also be several physical interconnects
(i.e. separate cables) connecting the initiator and target,
and it would be most desirable to aggregate and simulta-
neously utilize all such existing physical connections.
TCP does not provide traffic aggregation nor does it pro-
vide its own failover mechanism. An iSCSI session is
therefore defined to be a collection of one or more TCP
connections connecting an initiator to a target. The TCP
connections of a session may span several physical inter-
connects. See FIGURE 3.

FIGURE 3. An iSCSI session consisting of
multiple TCP connections over several
physical interconnects.

Initiator Target

physical interconnect

physical interconnect

TCP Connections

TCP Connections

Mechanisms are provided within iSCSI to efficiently
spread its traffic over multiple TCP connections and to
recover from connection failures. An iSCSI session may
thus utilize multiple TCP connections to achieve higher
utilization of the available bandwidth and/or for failover
capabilities in case one of the physical interconnects
becomes detached. An iSCSI session can remain active
as long as it is still possible to establish at least one con-
nection on any path connecting the initiator to the target.

In FCP fabrics, there may be multiple paths in the fab-
ric through which an initiator is connected to a target.
This causes complications for an initiator, because it
appears think it has multiple devices, when in fact it sim-
ply has multiple paths to the same device. Some Fibre
Channel vendors provide (expensive) multipath packages
to deal with this issue. In iSCSI the problem is minimized
because a single session connects the initiator to the tar-
get, even if there are multiple physical paths between
them. The initiator sees a single image of all of its
devices that exist on the target. In order to have multiple
paths to a device in the same sense as with an FCP fabric,
there would have to be multiple sessions between the ini-
tiator and target, and this is usually not needed.

2.3. Symmetric vs. asymmetric model

One of the issues that the designers grappled with was
whether data should travel over the same connections as
commands and control information. One approach is to
send all SCSI commands, SCSI responses, and task man-
agement information over a control channel, while all
data transfers go over separate data channels. We refer to
this approach as the asymmetric model, since there would
be different types of connections: control and data.
Another approach is to transfer data over the same con-
nection on which the corresponding command was sent.
We call this allegiance of a command to a TCP connec-
tion. In this approach, all connections are treated equally,
and we refer to it as the symmetric model. A major con-
cern with the symmetric model is the possibility of filling
up a connection with data from some command, closing
the TCP window, and then being unable to deliver a high-
priority task management request over the same channel.
In the asymmetric model, only commands and task man-
agement requests are sent over the control channel. These
are all relatively short messages, so the TCP window
would almost never be closed, and the control channel
would not block. A major drawback of the asymmetric
model occurs when using iSCSI adapters. If the connec-
tions for a control channel and its data channels are han-
dled by different iSCSI adapters, then the handling of a
command would require the interaction between different

iSCSI adapters, possibly through some software on the
host machine. This was deemed most undesirable. In
order to allow for complete solutions contained within
individual iSCSI adapters, the symmetric model was
adopted.

2.4. Uniform headers

Different iSCSI PDU headers contain different num-
bers of fields and field lengths, based on the particular
information needed for that type of PDU. It would have
been possible to have variable length PDU headers for
the various types of PDUs. The length of the PDU header
could be derived from the PDU opcode or from a length
field that would be in a fixed position. However, such a
scheme would require two read operations to read each
PDU header, thus incurring a significant performance
penalty, especially for software implementations. It was
therefore decided to use a uniform-sized PDU header for
all standard operations. The SCSI CDB is also a variable
length field. In order to maintain a uniform-sized PDU
header, the largest standard CDB size (16 bytes) was
accounted for in the standard size PDU header. The
iSCSI header for a typical SCSI command is reproduced
(from [1]) in FIGURE 4.

FIGURE 4. An iSCSI header for a SCSI
command.

If a larger PDU is required (possibly because of a
longer CDB), a special Additional Header Segment fea-
ture is included to specify a longer PDU header length.
Only in these exceptional cases would a second read

 Byte / 0 | 1 | 2 | 3 |
 / | | | |
 |0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|0 1 2 3 4 5 6 7|
 +---------------+---------------+---------------+---------------+
 0|.|I| 0x01 |F|R|W|0 0|ATTR | Reserved |
 +---------------+---------------+---------------+---------------+
 4|TotalAHSLength | DataSegmentLength |
 +---------------+---------------+---------------+---------------+
 8| Logical Unit Number (LUN) |
 + +
 12| |
 +---------------+---------------+---------------+---------------+
 16| Initiator Task Tag |
 +---------------+---------------+---------------+---------------+
 20| Expected Data Transfer Length |
 +---------------+---------------+---------------+---------------+
 24| CmdSN |
 +---------------+---------------+---------------+---------------+
 28| ExpStatSN |
 +---------------+---------------+---------------+---------------+
 32/ SCSI Command Descriptor Block (CDB) /
 +/ /
 +---------------+---------------+---------------+---------------+
 48

operation be required to read the entire header. In the nor-
mal case, only a single fixed-size read operation is
needed to read an iSCSI PDU header.

2.5. Direct data placement

In typical TCP implementations, data that arrives on a
TCP connection is first copied into temporary buffers.
The TCP driver then examines the connection identifica-
tion information (source and destination addresses and
port numbers) to determine the intended receiver of the
data. The data is then copied into the receiver’s buffers.
For SCSI data, there might be many pending SCSI com-
mands at any given instant, and the received data must
typically be copied into the specific buffer that was pro-
vided by the SCSI layer for the particular command. This
entire procedure might require the receiving host to copy
the data a number of times before the data ends up in its
final destination buffer. Such copies require a significant
amount of CPU and memory bus usage that would
adversely affect the system performance. It is therefore
most desirable to be able to place the data in its final des-
tination with a minimum number of copies.

Ideally, we would have liked to use a generic, well-
established Direct Data Placement mechanism. However,
no such mechanism existed in the IP suite of protocols.
Therefore, in parallel to the iSCSI protocol, an RDMA
(Remote Direct Memory Access) mechanism was also
proposed to the IETF (Internet Engineering Task Force,
responsible for the IP family of protocols). The RDMA
proposal did not make quick enough progress towards
standardization, so iSCSI could not depend on such a
general mechanism being available. It was therefore nec-
essary to add some Direct Data Placement support infra-
structure directly into iSCSI. iSCSI Data PDU headers
contain sufficient information to allow an iSCSI adapter
to perform Direct Data Placement. The information pro-
vided in an iSCSI Data PDU header include: a transfer
tag to identify the SCSI command and its corresponding
buffer, a byte offset relative to the beginning of the corre-
sponding buffer, and a data length parameter indicating
the number of bytes being transferred in the current data
packet. This information is sufficient to enable direct
placement of the arriving data into pre-registered SCSI
provided buffers. An iSCSI adapter that performs both
TCP and iSCSI processing on the adapter will have suffi-
cient information in the TCP and iSCSI headers to place
arriving iSCSI data directly into the appropriate SCSI
buffers without having to copy the data into additional
temporary buffers on the host machine.

An iSCSI implementation can easily exploit a generic
RDMA, whenever it becomes available.

2.6. Unsolicited and immediate data

The SCSI protocol has a command phase followed by
a data transfer phase and a response phase. The data
transfer phase is often driven by the target; the target
specifies which data it is ready to process. Historically,
some target devices would optimize their command pro-
cessing based on where a disk head happened to be sta-
tioned. Data for a particular command need not be
transferred in order. The target might request sectors of
data in a non-contiguous order, based on internal target
considerations.

With network-storage and RAID controllers with large
caches, it is still beneficial in many cases for the target to
choose what data should be transferred to/from the initia-
tor, based on availability of memory or other resources. It
should be noted, however, that extra messages are
required for the target to inform the initiator which data
to send. For large data transfers this is quite acceptable.
For short data transfers, where only a single block of data
is to be transferred, we end up paying the overhead of an
extra message and the resulting round-trip time delay.
This penalty grows with the network-distance between
the initiator and target.

In order to reduce this performance penalty, iSCSI
allows the initiator and target to agree upon a maximum
data transfer length that may be sent unsolicited. A target
may keep available some number of free buffers to
accommodate up to some amount of unsolicited data. On
any particular command, an initiator may send up to the
agreed maximum amount of data without the target hav-
ing to first explicitly request the data to be transferred.
Once the maximum length for unsolicited has been
reached, the target sends Request to Transfer (R2T) mes-
sages to the initiator specifying which data may now be
transferred. The target provides a transfer tag with each
R2T to allow Direct Data Placement of the data when it
arrives.

Ordinarily, data is sent in iSCSI Data PDUs in the data
transfer phase. If the amount of data to be transferred
from initiator to target is so small that it will fit in a single
iSCSI packet, then the data may be sent as immediate
data. This means that the data is sent together with the
SCSI command in the same iSCSI PDU, thus collapsing
the command and data phases. Additionally, even if the
data will extend beyond a single iSCSI PDU, the first part
of the data may be sent together with the iSCSI Com-
mand PDU as immediate data, up to the maximum agreed
size.

2.7. iSCSI recovery

The considerations in defining iSCSI Error Recovery
mechanisms centered on the anticipated problems that
would occur as a result of running on non-reliable IP
based networks. Although infrastructure for Local Area
Networks (LANs) has significantly improved in recent
years so as to not require special iSCSI level recovery,
problems do occur on long distance data transfer. We
concentrate here on two particular problems:

• TCP connections do occasionally break and
must be re-established.
• The TCP error detection mechanism (16 bit
checksum) is not sufficiently reliable for storage
data.

The iSCSI protocol defines mechanisms to overcome
each of these types of errors, without having to fail a cor-
responding SCSI command. Simple iSCSI implementa-
tions may opt to not implement the advanced iSCSI level
recovery, and may simply fail any pending SCSI com-
mand that is affected by an encountered TCP problem.

2.7.1. Session recovery. The most basic kind of recov-
ery is called session recovery. In session recovery, when-
ever any kind of error is detected, the entire iSCSI
session is terminated. All TCP connections connecting
the initiator to the target are closed, and all pending SCSI
commands are completed with an appropriate error sta-
tus. A new iSCSI session is then established between the
initiator and target, with new TCP connections. The
upper level SCSI protocol may re-issue the failed com-
mands, and these commands will be transported over the
new TCP connections of the new session. iSCSI Session
Recovery thus essentially passes the recovery on to the
SCSI level to re-issue failed SCSI commands. This is the
most basic kind of recovery that all iSCSI implementa-
tions must provide.

2.7.2. Digest failure recovery. TCP defines a 16-bit
checksum to detect corruption of TCP packets. The
checksum used by TCP was considered to be too weak
for the requirements of storage. There are also instances
where the TCP checksum does not protect iSCSI data, as
when data is corrupted while being transferred on a PCI
bus or while in memory. The iSCSI protocol therefore
defines a 32-bit CRC digest on iSCSI packets in order to
detect data corruption on an end-to-end basis. CRCs can
be used on iSCSI PDU headers and/or data. If the iSCSI
driver detects that data arrived with an invalid CRC
digest, the data packet must be rejected. The command

corresponding to the corrupted data can then be com-
pleted with an appropriate error indication. Alternatively,
the iSCSI protocol defines a means by which the receiver
of the corrupted data can inform the sender to resend a
previously sent packet of data. The data transfer for a
SCSI command may occur in several data transfer pack-
ets. It is often not necessary to resend all of the data for
the entire SCSI command, as the receiver can specify
exactly which packet of data is required.

2.7.3. Connection recovery. It sometimes occurs that a
TCP connection is broken. This may occur as a result of
some kind of transient exceptional condition on the net-
work that prevents data from reaching its destination in a
timely manner. If on the broken TCP connection there
was a SCSI command that was delivered to an iSCSI tar-
get but for which a response had not yet been received by
the initiator, the SCSI command could remain pending
until the upper level SCSI driver decides that the com-
mand has timed out and tries to abort the affected SCSI
command. The SCSI level time-out might be tens of sec-
onds, all which time an application is waiting for its I/O
operation to complete. Upon detection of a broken TCP
connection, the iSCSI driver can either immediately com-
plete the pending command with an appropriate error
indication, or it can attempt to transfer the SCSI com-
mand to another TCP connection. If necessary, the iSCSI
initiator driver can establish another TCP connection to
the target, and the iSCSI initiator driver can inform the
target that the allegiance of the SCSI command is being
changed to another TCP connection. The target can then
proceed to continue processing the SCSI command on
the new TCP connection. The upper level SCSI driver
remains unaware that a new TCP connection has been
established and that the command has been transferred to
the new connection.

We thus have several possible classes of recovery of
increasing complexity: session recovery, digest-failure
recovery, connection recovery. For some environments
(such as local LANs with disks), it is sufficient to imple-
ment only session recovery, whereby upon any error, the
iSCSI session is terminated and all pending SCSI com-
mands are completed with an error indication. The upper
level SCSI driver can then re-issue the failed commands
that will be transported over the TCP connections of a
new iSCSI session. For some environments (such as with
tape commands where it is rather expensive to restart
commands, or for long distance backups where commu-
nication problems are more likely) it will be more appro-
priate to implement a more complex level of recovery:
digest failure recovery and/or connection recovery.

2.8. Message framing

It would be desirable if iSCSI PDUs could be easily
marked within the TCP stream. One of the problems with
the defined PDU scheme occurs when an iSCSI PDU
header becomes corrupted, as detected by an iSCSI PDU
header CRC mismatch. If an iSCSI header becomes cor-
rupted, we have no way of knowing for sure where the
next iSCSI PDU begins, since the length of the current
PDU is stored in the corrupted header. The obvious rem-
edy of closing the TCP connection and performing con-
nection recovery might be overly expensive and
disruptive. It would be best if we could simply discard
the corrupted iSCSI PDU without having to close the
connection, and continue processing on the same connec-
tion. In order to accomplish this, we need to know where
the next iSCSI PDU begins, relative to the current (cor-
rupted) PDU. Various ideas were proposed in order to
accomplish this:

• Insist that the beginning of each TCP packet
coincide with the beginning of an iSCSI PDU.
• Set a fixed length for all iSCSI PDUs.
• Use the urgent feature of TCP to indicate where
the next iSCSI PDU begins in the TCP stream.

All of these suggestions were rejected either for
imposing non-standard usage on TCP or because the pro-
posed solution would be overly inefficient for normal
operations.

Some type of generic framing capability will probably
eventually be added to the TCP/IP family of protocols,
and iSCSI will then be able to exploit it. In the meantime,
the iSCSI specification suggests a scheme using markers
to indicate where future iSCSI PDU headers are to appear
in the TCP stream. By agreement between initiator and
target, a marker, at fixed byte intervals in an iSCSI TCP
stream, may be inserted to indicate where the next iSCSI
PDU begins in the TCP stream. If a digest error is
detected in an iSCSI PDU header, all data up to the PDU
indicated by the marker is discarded. PDU processing
continues from the next valid PDU indicated by the
marker. A message is issued to request from the connect-
ing party to resend the PDUs that were discarded. This
proposed mechanism of markers does not in any way
interfere with ordinary implementations or semantics of
TCP.

2.9. Security

In Directly Attached Storage and in early Fibre Chan-
nel SANs, there was no perceived need for special secu-
rity, as the storage was physically isolated from potential

security threats. With the advent of IP attached storage,
there is now the possibility of storage and other network
traffic sharing a common network infrastructure. There is
therefore a need to provide some kind of security within
the framework of the iSCSI protocol. Some environments
may require encryption (as when transferring sensitive
data over an open network), while other environments
may not require any special security enforcement (as on a
private, physically secure, IP SAN). iSCSI therefore
allows for different levels of security:

• No security.
• Authentication of communicating parties (initi-
ator and target).
• Encryption.

Since iSCSI runs over IP, it is natural to leverage
existing security mechanisms in the IP family of proto-
cols. Thus IPSec [8] can be used to encrypt all iSCSI traf-
fic over particular TCP connections.

2.10. Naming

Another issue that the designers of the iSCSI protocol
grappled with was with naming. How should iSCSI enti-
ties be named? What iSCSI entities should be named?

Borrowing from other internet protocols, iSCSI uses a
URL-like scheme to name targets. iSCSI names are
meant to be global, similar to World Wide Names used by
Fibre Channel. An iSCSI entity might have its IP address
changed but retain its name. In fact, multiple IP addresses
may map to a single iSCSI name, and multiple iSCSI
names might map to a single IP address. An iSCSI entity
is identified by its name and not by its address(es). This
allows for easier handling of iSCSI names by proxies,
gateways, Network Address Translation boxes, firewalls,
etc. iSCSI names should be World-Wide unique. Typical
iSCSI names might look like the following.

iqn.2001-04.com.acme:storage.disk2.sys1.xyz
The prefix iqn stands for iSCSI Qualified Name. The

above named device was produced by the company that
owned the domain name acme.com during 2001-04. This
may be followed by a character string, as deemed appro-
priate by the domain-name owner, to further qualify the
name of the particular device.

2.11. Parameter negotiation

iSCSI initiators and targets can negotiate a number of
parameters such as maximum PDU length, desired
authentication method, number of TCP connections in
the session. It was assumed that it was impossible to fore-
see all of the possible parameters that various implemen-

tations would want to implement. It was assumed that
additional parameters would be introduced as implemen-
tations discover other useful parameters that could be
negotiated. The iSCSI specification therefore specifies
the parameters that were identified, and defines a mecha-
nism to define new parameters that can be negotiated
between cooperating implementations. All parameters
are negotiated using Text keys, allowing vendors to intro-
duce new (and/or proprietary) keys for special features.
Any iSCSI entity that does not recognize a proprietary
key may safely ignore the unknown key. All implementa-
tions are required to support the basic defined set of
parameter keys. The parameter negotiation mechanism is
thus extensible, and the set of negotiated parameters can
be broadened as iSCSI gains acceptance.

3.0. How is iSCSI being used?
As mentioned above, iSCSI is seen as a cheaper alter-

native to Fibre Channel SANs. Because of its high cost,
Fibre Channel SANs were previously considered to be
limited to large data centers. iSCSI now allows for lower
cost network access to shared data, and brings the SAN to
the low-end market. Low-end iSCSI storage controllers
have already appeared on the market, as have iSCSI tape
backup systems.

Of course, previous investments in Fibre Channel
infrastructure will continue to be utilized. iSCSI gate-
ways have appeared to bridge existing Fibre Channel
devices to Ethernet. Additionally, in parallel to iSCSI,
two additional IP-based protocols have been introduced
to connect Fibre Channel SANs over IP [11], [12].

4.0. Summary
We discussed above some of the issues that were

addressed in designing the iSCSI protocol. On each issue
there were alternate suggestions, each with its pros and
cons. We discussed the reasons for the design choices on
each of these issues. One of the main recurring themes
was to make use of the existing IP protocol family to the
greatest extent possible, without requiring any changes to
existing protocols. As new protocols and features are
added to the IP protocol family, these can also be lever-
aged by new iSCSI implementations.

5.0. Acknowledgements
Many people contributed ideas to the definition of the

iSCSI protocol. We would especially like to thank those

who participated in the Design Team and in our early
phone calls and meetings including: Efri Zeidner, Costa
Sapuntzakis, Mallikarjun Chadalapaka, Daniel Smith,
Ofer Biran, Jim Hafner, John Hufferd, Mark Bakke,
Randy Haagens, Matt Wakeley, Luciano Dalle Ore, Paul
Von Stamwitz, Prasenjit Sarkar, Meir Toledano, John
Dowdy, Steve Legg, Alain Azagury, Dave Nagle, David
Black, John Matze, Steve DeGroote, Mark Schrandt,
Gabi Hecht, Robert Snively, Brian Forbes, Nelson
Nachum, Uri Elzur.

 References
[1] Julian Satran, et al, iSCSI (Internet SCSI), draft-ietf-ips-

iscsi-19.txt (Nov., 2002); see ietf.org/html.charters/ips-
charter.html or www.haifa.il.ibm.com/satran/ips

[2] RFC791, internet Protocol (IP), DARPA Internet Pro-
gram, Protocol Specification, Sep 1981; see http://
ietf.org/rfc.html.

[3] RFC793, Transmission Control Protocol (TCP), DARPA
Internet Program, Protocol Specification, Sep 1981; see
http://ietf.org/rfc.html.

[4] SAM2, SCSI Architecture Model – 2, T10 Technical
Committee NCITS (National Committee for Information
Technology Standards), T10, Project 1157-D, Revision
23, 16 Mar 2002.

[5] SBP-2, Serial Bus Protocol - 2, ANSI NCITS.325-1999.
[6] FCP, SCSI-3 Fibre Channel Protocol, ANSI X3.269-

1996.
[7] Benner, A. Fibre Channel: Gigabit Communications and

I/O for Computer Networks, McGraw Hill, New York,
1996.

[8] RFC2401, S. Kent, R. Atkinson, Security Architecture
for the Internet Protocol (IPSec), November 1998; see
http://ietf.org/rfc.html.

[9] RFC2165, Service Location Protocol (SLP), June 1997;
see http://ietf.org/rfc.html.

[10] RFC2960, R. Stewart, et al, Stream Control Transmission
Protocol (SCTP), October 2000; see http://ietf.org/
rfc.html.

[11] M Rajagopal, et al, Fibre Channel over TCP/IP (FCIP),
draft-ietf-ips-fcovertcpip-12.txt (August, 2002); see
ietf.org/html.charters/ips-charter.html or
www.haifa.il.ibm.com/satran/ips.

[12] Charles Monia, et al, iFCP - A Protocol for Internet Fibre
Channel Storage Networking, draft-ietf-ips-ifcp-13.txt
(August, 2002); see ietf.org/html.charters/ips-char-
ter.html or www.haifa.il.ibm.com/satran/ips.

