
Design and Implementation of Multiple Addresses Parallel Transmission
Architecture for Storage Area Network

Bin Meng, Patrick B. T. Khoo, T. C. Chong
Data Storage Institute Affiliated to the National University of Singapore

{meng_bin, khoo_beng_teck, chong_tow_chong}@dsi.a-star.edu.sg

Abstract

In this paper, we present a parallel transmission
architecture for SAN. By using two schedulers on the
destination and source addresses of packets, the load of
multiple data flows between multiple devices can be
balanced in an asymmetrical topology without using
special hardware. The SAN performance could be scaled
flexibly and additional fault tolerance feature is provided.
The load balancing algorithms we provide can be easily
implemented and the computation is efficient enough for
high-speed transmission.

1. Introduction

The demand for high availability and high
performance in Storage Area Networks (SAN) is a
driving force behind much of the effort on network
architecture design. SAN performance must be able to
grow flexibly to meet an organization’s information
storage and processing needs grow.

The use of parallel channels to build a SAN is an
attractive method to achieve this result due to its high
availability, scalability and flexibility. This paper outlines
a study on multiple addresses parallel transmission
architecture for SAN, in particular, its development using
the HyperSCSI network storage protocol [1]. The aim of
this work is to design and implement a parallel
architecture network that can increase the end-to-end
network I/O performance between HyperSCSI storage
modules by employing more physical communication
channels in a packet switching network. In addition, a
built-in fault tolerant strategy for surviving and
recovering from network failures is provided.

Research on parallel resource modeling is emerging in
recent years. Several papers have provided theoretical
models [2, 3, 4, 5, 6] for multiple resources scheduling in
parallel network. These theories have proven to be very
helpful in our efforts to design and evaluate the
throughput, delay, and load balancing algorithms.

Previous researches concentrate on Multichannel
Local Area Network (MLAN) [7], a bus sharing
architecture. However, most new storage network
applications work on packet switching networks [1],
which is more scalable and flexible.

Other implementations are not designed for end-to-end
communication. For instance, parallel SCSI cables [8],
Link Aggregation Control Protocol (LACP) [9] and Sun
Trunking [10], are designed for node to node
communication. They are limited by distance, unbalanced
loads and topology dependency. Although GridFTP [11]
provides end-to-end parallel TCP streams, it only
increases the channel utilization not the physical
bandwidth. In our paper, we present a different design in
order to avoid these limitations.

2. Theoretical models

In this section we will discuss the theories behind our
network topology and data transmission model.

2.1. Multiple addresses parallel transmission
model

In a SAN, the topology is arbitrary, the storage devices
are expected to have variable bandwidth and packets can
have variable sizes. Our model can meet these
requirements by providing asymmetrical parallel channels
between sender and receiver.

The theoretical model of a connection between a
sender and a receiver is composed of five sequential
components (Figure 1.): 1. the first stage destination
addresses load balancing scheduler, 2. data flow priority
controller, 3. the global second stage source addresses
load balancing scheduler, 4. hashing table for address
restoration and 5. data flow reorder. With this architecture,
the bandwidth of each network storage node can be easily
increased or decreased independently. This model can
work in a normal packet switching network without the
use of special hardware.

mailto:chong_tow_chong}@dsi.a-star.edu.sg

Marker R1

Data Flow
MergingMarker R2

Marker R3

Flow S1-R1

Receiver
Packet

Switching
Network

Flow S2-R1

Destination Addresses
Load Balancing

Data Flow
Priority Control

Source Addresses
Load Balancing

Sender Node S1

Hashing Table
Address Restore

Data Flow
Reordering

Receiver Node R1

Flow S1-R1

Flow S1-R3

Flow S1-R2

S4S3S2S1

Figure 1. Model for multiple addresses parallel transmission architecture

2.2. The first and second stage load balancing
schedulers on sender

We suppose that both sender node and receiver node
have multiple network interfaces with unique addresses.
These two address tables are exchanged before the data
transmission.

In the sender node, two schedulers are used to balance
the traffic load. Each data flow has one first stage
scheduler respectively (Figure 1. Destination load
balancing Markers), and all data flows share one global
second stage scheduler (Figure 1. Source load balancing
scheduler).

The first stage scheduler is used to balance load at
receiver node by applying the load balancing algorithms
on destination addresses. The second stage scheduler is
used to balance the out going load at the sender node by
applying load balancing algorithms on source addresses.

After a packet been assigned destination address and
source address by these two schedulers, it is sent to the
network and routed by normal routers and switches. Thus,
multiple data flows can be balanced in an asymmetrical
environment. Load balancing algorithms for two
schedulers are derived from a reverse of the fair queuing
algorithm [2]. Here, we intend to distribute variable sized
packets to multiple channels. We discuss and compare
four load balancing algorithms.

2.2.1. The Reverse Generalized Processor Sharing
(RGPS). This algorithm is a reversal algorithm of
Generalized Processor Sharing on the condition that every
connection is backlogged. The original definition of GPS
is:

)(
)(

),,(
),,(

j
i

tjS
tiS

φ
φ

τ
τ

≥

Where , , …, φ , are positive real
weights for the connection, and the server serves

 amount of data from the i th connection in the
interval [.

)1(φ

], t

)2(φ)(N

),,(tiS τ
τ

The RGPS is used to schedule one queue to multiple
connections with service weights. It sends infinitesimally
small amount to each connection. In RGPS, every
connection is backlogged, because we intend to use all
connection resources. From the RGPS definition, we have

)(
)(

),,(
),,(

j
i

tjS
tiS

φ
φ

τ
τ

=

This formula means all connections strictly share the
service in proportion to their weights. RGPS is a perfect
load balancing algorithm, but it is unimplementable since
we must schedule packet, not infinitesimal. However, the
concept of RGPS can be used to evaluate other algorithms.

2.2.2. The Reverse Weighted Round Robin (RWRR).
The Weighted Round Robin (WRR) algorithm is used to
serve a packet instead of infinitesimal from each
backlogged queue in turn. The RWRR algorithm is
reverse of the Weighted Round Robin. It sends packets to
connections in turn with normalized weights. The traffic
load is perfectly balanced if the packet size is fixed.

In SAN, the proportion of the similar sized packets is
high. Thus we can use RWRR algorithm to approximate a
perfect load balancing algorithm. The RWRR algorithm
needs less computation overhead and the traffic load is
roughly balanced when the packet size is similar. The
RWRR work complexity is ο .)1(

2.2.3. The Reverse Weighted Fair Queuing (RWFQ).
This algorithm is a reverse of Weighted Fair Queuing
algorithm [12]. The RWFQ algorithm serves channels in
order of their finish number (or finish time), where the

finish number is computed by RGPS algorithm. The
channel with the minimum finish number is selected to
send next packet. The weighted finish number equation is

)(),,(),1,(),,(itkiTtkiFtkiF φ÷+−=
rtkiLtkiT ÷=),,(),,(

where T is the service time of k th packet on
connection i , is the length of k th packet that
transmits on connection i at time t , is the link service
rate, φ is the weight of the connection i . The RWFQ
algorithm is better than RWRR when packet size is not
fixed. The work complexity of RWFQ is ο .

),,(tki
,(kiL

)

), t
r

(i

))(log(n

2.2.4. The Reverse Deficit Round Robin (RDRR).
This algorithm is a reverse of Deficit Round Robin
algorithm [13]. It uses a Deficit Counter (DC) and
quantum of service by measuring the weights of the
channel. Each time a channel been selected, the DC is
incremented by the quantum for that channel. Packets are
sent to the channel and its DC is decremented by the
packet size, till the DC becomes non-positive, then the
next channel is selected. The RDRR work complexity is

.)1(ο
In our experiment, all three algorithms RWRR, RWFQ

and RDRR are implemented. Each algorithm has its
advantages. The RWRR algorithm is simple and efficient
for scheduling large number of channels with fixed packet
size. The RWFQ algorithm conducts a perfect load
balancing; it can be used when storage system has
excellent computation power. The RDRR algorithm is a
better solution when many channels with various packet
sizes are used and computation resource is constrained.
These three algorithms are easy to implement for load
balancing.

2.3. Data flow priority algorithm on sender

Between first and second scheduler, we merge the data
flows into one virtual data channel (Figure 1. data flow
priority), so that the packets of the conversation can
migrate among the network interface without being aware
of the underlying physical channels. Furthermore,
keeping multiple conversations on one virtual channel is
more efficient for packet transmission.

Here a service discipline [14] can be used to provide
priority for the data flows merging. In this paper, all data
flows are assigned the same priority to demonstrate the
flexibility and the scalability of the multiple addresses
parallel transmission.

2.4. Data flow recovery -- hashing addresses
restoring and reordering on receiver

In the receiver node, data flows are restored and
reordered when packets arrive at different network
interfaces. Here, a hashing address searching algorithm
(Figure 1. hashing table address restore) is used to restore
the data flow and provide a bounded searching delay. The
search complexity of a chaining with separate lists is

, where is the address number, and l is the list
numbers.

(/)n lο n

After the data flows been restored, the out-of-order
packets must be reordered (Figure 1. data flow reordering)
by receiver. Unlike in a normal network [15], the out-of-
order rate in parallel architecture can be large and
predictable. In parallel transmission, out-of-order delivery
can be caused by different channel bandwidths and packet
sizes. The minimum reordering buffer size W is computed
by

2/*)(
1

i

N

i

RTTMaxW ϖ∑
=

=

where is the round trip time that a
maximum sized packet used to pass through the minimum
bandwidth channel, N is the numbers of the channels, ϖ
is bandwidth of each channel.

)(RTTMax

i

Although the out-of–order rate could be large, the out-
of-order distance is small and packets can be reordered
efficiently without affecting the transmission performance.

2.5. Fault tolerance and detection algorithms

Since the multiple addresses parallel transmission
architecture uses redundant channels, the scheduler can
provide fault tolerance by detecting channel fault and
rescheduling data flows to usable channels. The fault
detection algorithm can use either hardware based,
software local loop back and/or remote acknowledge
detection methods. With different computation
complexity, the failure of the first hop link, the nearest
switch and the full data path could be detected.

3. Implementation and results

To demonstrate the multiple addresses parallel
transmission protocol (MAPTP) in a SAN, we use the
HyperSCSI [1] network storage protocol as the upper
layer and the Ethernet link layer as the sub channel. The
HyperSCSI protocol provides a virtual SCSI interface
service by packing SCSI commands and data into
network packets.

The MAPTP protocol is implemented as a Linux
kernel module. The test bed of the MAPTP is a packet
switching network composed of Fast Ethernet (FE) and
Gigabit Ethernet (GE) links. The storage device server
and clients are connected to the switch with differing
numbers of links. We measure the performance by testing
the Disk read speed of the HyperSCSI network storage
device.

3.1. Disk read performance in asymmetrical and
symmetrical parallel network.

The tests used HDPARM, DD and IOZONE to read
5GB data. With more channels added, the asymmetrical
and symmetrical disk read performance of the HyperSCSI
device increases nearly linearly (Figure 2, 3) until the
limit of the system performance is reached. The
asymmetrical performance is slightly better, because it
use fewer network interfaces, which means fewer
schedule overhead.

Client GE - Server FEs Disk Read Performance

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1 2 3 4 5 6 7

NICs

D
is

k
R

ea
d

(M
B

/s
)

RWRR
RDRR
RWFQ

Figure 2. One GE - Multiple FEs
asymmetrical disk read performance

Client FEs - Server FEs Disk Read Performance

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1 2 3 4 5 6 7

NIC Pairs

D
is

k
R

ea
d

(M
B

/s
)

RWRR
RDRR
RWFQ

Figure 3. Multiple FE pairs symmetrical
disk read performance

With all three scheduling algorithm RWRR, RDRR
and RWFQ, HyperSCSI bandwidth can be increased
above 380% when 4 links are used. Thus the network
utilization rate of the multiple channels HyperSCSI is
95%. The overhead caused by MAPTP is roughly 5% per
channel, which is acceptable when compared to the
bandwidth increase. Because in SAN, most packets have
similar size, all three algorithms have similar performance
result. All these algorithms can be used for load balancing
with little computation overhead.

3.2. Out-of-order rate analysis

From figure 4 and 5, we found that the out-of-order
rate does not affect the disk read performance before the
system limit is reached. And the out-of-order rate
decreases when more channels are used. When using the
FE pairs, the out-of-order rate decreases dramatically.

Client GE - Server FEs Out-of-order Rate

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 2 3 4 5 6 7

NICs

O
ut

-o
f-o

rd
er

 R
at

e
(%

)

RWRR
RDRR
RWFQ

Figure 4. One GE - Multiple FEs
asymmetrical out-of-order rate

Client FEs - Server FEs Out-of-order Rate

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1 2 3 4 5 6 7

NIC Pairs

O
ut

-o
f-o

rd
er

 R
at

e
(%

)

RWRR
RDRR
RWFQ

Figure 5. Multiple FE pairs symmetrical
out-of-order rate

The reason of this rate drop is that in each schedule
round, the schedule delay between sequential packets
increase with more channels added. Larger schedule delay
between packets means the probability of out-of-order is
small. With more channel added, the out-of-order rate can
drop rapidly. Similar result can also be observed when the
packet size been increased and cause larger schedule
delay. With packet size increased, the out-of-order rate
also dropped.

3.3. Multiple clients - multiple channels disk read
performance

For the multiple clients and multiple channels load
balancing tests, one server with GE and two clients with
multiple FEs are used. The figure 6 shows that the load is
evenly balanced on both clients and channels. The sum of
the disk read performance can approach the system
maximum throughput when 6 FEs are used.

Server GE - 2 Clinet FEs load balancing

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

2 FE
Buffered-disk
reads (MB/s)

3 FE
Buffered-disk
reads (MB/s)

D
is

k
R

ea
d

(M
B

/s
)

Client 1
Client 2
Sum client1,client2
Max throughput

Figure 6. Load balancing on two clients
with multiple FEs

4. Future work

Future research work may focus on QoS applications
in parallel transmission packet switching SAN. More
study should be conducted on out-of-order feature in a
parallel transmission.

5. Conclusion

In this paper, we provide a theoretical model and an
implementation demonstrating the multiple addresses
parallel transmission architecture in action. This
architecture supports flexible performance scaling in a
packet switching network. As such, SAN topology using
this structure will have good scalability and fault

tolerance but without much additional complexity. In
addition, by supporting Ethernet MAC and IP packets, the
network storage devices can work in both LAN and WAN
environments. This multiple addresses parallel
transmission architecture could be a key factor in
deploying SANs which can provide a highly scalable
bandwidth with full redundancy over switched, parallel
data paths.

References

[1] Patrick Beng T. KHOO and Wilson Yong H. WANG,

“Introducing A Flexible Data Transport Protocol for
Network Storage Applications,” 10th NASA Mass Storage
Systems and Technologies Conference / 19th IEEE
Symposium on Mass Storage Systems, 15-18 April 2002.

[2] Hari Adiseshu, Guru Parulkar and George Varghese, “A
Reliable and Scalable Striping Protrocol,” SIGCOMM,
1996.

[3] Josep M.Blanquer and Banu Ozden, “Fair Queuing for
Aggregated Multiple Links,” ACM, SIGCOMM’01,
August 27-31,2001.

[4] Jorge A.Cobb, “An In-Depth Look at Flow Aggregation for
Efficient Quality of Service,” IEEE/ACM transaction on
networking, 2002.

[5] Jorge A. Cobb and Miaohua Lin, “End-to-End Delay
Guarantees for Multiple-Channel Schedulers,” IEEE, 2002.

[6] C. Brendan S. Traw and Jonathan M. Smith, “Striping
Within the Network Subsystem,” IEEE, 1995.

[7] M.A. Marsan and D. Roffinella, “Multichannel local area
network protocol,” IEEE, J. Sel. Areas in Commun., vol.
SAC-1, pp. 885-897, Nov. 1983.

[8] Bill Ham, Digital Equipment, “Parallel SCSI Grows,
Shrinks and Stays the Same,” www.scsita.org, 1997.

[9] “Link Aggregation Control Protocol,” IEEE Std 802.3,
2000 Edition.

[10] SUN Trunking Software.http://www.sun.com .
[11] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I.

Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnal,
S. Tuecke. ” Data Management and Transfer in High
Performance Computational Grid Environments,” Parallel
Computing Journal, Vol. 28 (5), May 2002.

[12] Abhay K. Parekh and Robert G. Gallager, “A Generalized
Processor Sharing Approach to Flow Control in Integrated
Services Networks: The Single-Node Case,” IEEE/ACM,
Transactions on Networking, Vol.1, NO. 3, JUNE 1993.

[13] M. Shreedhar and George Varghese, “Efficient Fair
Queuing using Deficit Round Robin,” SIGCOMM, ACM,
1995.

[14] Hui Zhang, “Service Disciplines for Guaranteed
Performance Service in Packet-Switching Networks,”
Proceeding of the IEEE, 83(10), Oct 1995.

[15] Vern Paxson, “End-to-End Internet Packet Dynamics,”
IEEE/ACM transactions on networking, VOL. 7, No. 3,
JUNE 1999.

http://www.scsita.org/

	Introduction
	Theoretical models
	Multiple addresses parallel transmission model
	The first and second stage load balancing schedulers on sender
	The Reverse Generalized Processor Sharing (RGPS). This algorithm is a reversal algorithm of Generalized Processor Sharing on the condition that every connection is backlogged. The original definition of GPS is:
	The Reverse Weighted Round Robin (RWRR). The Weighted Round Robin (WRR) algorithm is used to serve a packet instead of infinitesimal from each backlogged queue in turn. The RWRR algorithm is reverse of the Weighted Round Robin. It sends packets to co
	The Reverse Weighted Fair Queuing (RWFQ). This algorithm is a reverse of Weighted Fair Queuing algorithm [�]. The RWFQ algorithm serves channels in order of their finish number (or finish time), where the finish number is computed by RGPS algorithm.
	The Reverse Deficit Round Robin (RDRR). This algorithm is a reverse of Deficit Round Robin algorithm [�]. It uses a Deficit Counter (DC) and quantum of service by measuring the weights of the channel. Each time a channel been selected, the DC is incr

	Data flow priority algorithm on sender
	Data flow recovery -- hashing addresses restoring and reordering on receiver
	Fault tolerance and detection algorithms

	Implementation and results
	Disk read performance in asymmetrical and symmetrical parallel network.
	Out-of-order rate analysis
	Multiple clients - multiple channels disk read performance

	Future work
	Conclusion
	References

