
Design and Implementation of Multiple Addresses Parallel Transmission 
Architecture for Storage Area Network 

Bin Meng, Patrick B. T. Khoo, T. C. Chong 
Data Storage Institute Affiliated to the National University of Singapore 

{meng_bin, khoo_beng_teck, chong_tow_chong}@dsi.a-star.edu.sg 
 
 

Abstract 

In this paper, we present a parallel transmission 
architecture for SAN. By using two schedulers on the 
destination and source addresses of packets, the load of 
multiple data flows between multiple devices can be 
balanced in an asymmetrical topology without using 
special hardware. The SAN performance could be scaled 
flexibly and additional fault tolerance feature is provided. 
The load balancing algorithms we provide can be easily 
implemented and the computation is efficient enough for 
high-speed transmission. 

1. Introduction 

The demand for high availability and high 
performance in Storage Area Networks (SAN) is a 
driving force behind much of the effort on network 
architecture design. SAN performance must be able to 
grow flexibly to meet an organization’s information 
storage and processing needs grow.  

The use of parallel channels to build a SAN is an 
attractive method to achieve this result due to its high 
availability, scalability and flexibility. This paper outlines 
a study on multiple addresses parallel transmission 
architecture for SAN, in particular, its development using 
the HyperSCSI network storage protocol [1]. The aim of 
this work is to design and implement a parallel 
architecture network that can increase the end-to-end 
network I/O performance between HyperSCSI storage 
modules by employing more physical communication 
channels in a packet switching network. In addition, a 
built-in fault tolerant strategy for surviving and 
recovering from network failures is provided.  

Research on parallel resource modeling is emerging in 
recent years. Several papers have provided theoretical 
models [2, 3, 4, 5, 6] for multiple resources scheduling in 
parallel network. These theories have proven to be very 
helpful in our efforts to design and evaluate the 
throughput, delay, and load balancing algorithms.  

Previous researches concentrate on Multichannel 
Local Area Network (MLAN) [ 7 ], a bus sharing 
architecture. However, most new storage network 
applications work on packet switching networks [1], 
which is more scalable and flexible.  

Other implementations are not designed for end-to-end 
communication. For instance, parallel SCSI cables [8], 
Link Aggregation Control Protocol (LACP) [9] and Sun 
Trunking [ 10 ], are designed for node to node 
communication. They are limited by distance, unbalanced 
loads and topology dependency. Although GridFTP [11] 
provides end-to-end parallel TCP streams, it only 
increases the channel utilization not the physical 
bandwidth. In our paper, we present a different design in 
order to avoid these limitations. 

2. Theoretical models 

In this section we will discuss the theories behind our 
network topology and data transmission model.  

2.1. Multiple addresses parallel transmission 
model  

In a SAN, the topology is arbitrary, the storage devices 
are expected to have variable bandwidth and packets can 
have variable sizes. Our model can meet these 
requirements by providing asymmetrical parallel channels 
between sender and receiver.  

The theoretical model of a connection between a 
sender and a receiver is composed of five sequential 
components (Figure 1.): 1. the first stage  destination  
addresses load balancing scheduler, 2. data flow priority 
controller, 3. the global second stage source addresses 
load balancing scheduler, 4. hashing table for address 
restoration and 5. data flow reorder. With this architecture, 
the bandwidth of each network storage node can be easily 
increased or decreased independently. This model can 
work in a normal packet switching network without the 
use of special hardware.   
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Figure 1.  Model for multiple addresses parallel transmission architecture 

2.2. The first and second stage load balancing 
schedulers on sender 

We suppose that both sender node and receiver node 
have multiple network interfaces with unique addresses. 
These two address tables are exchanged before the data 
transmission. 

In the sender node, two schedulers are used to balance 
the traffic load. Each data flow has one first stage 
scheduler respectively (Figure 1. Destination load 
balancing Markers), and all data flows share one global 
second stage scheduler (Figure 1. Source load balancing 
scheduler).  

The first stage scheduler is used to balance load at 
receiver node by applying the load balancing algorithms 
on destination addresses. The second stage scheduler is 
used to balance the out going load at the sender node by 
applying load balancing algorithms on source addresses.   

After a packet been assigned destination address and 
source address by these two schedulers, it is sent to the 
network and routed by normal routers and switches. Thus, 
multiple data flows can be balanced in an asymmetrical 
environment. Load balancing algorithms for two 
schedulers are derived from a reverse of the fair queuing 
algorithm [2]. Here, we intend to distribute variable sized 
packets to multiple channels. We discuss and compare 
four load balancing algorithms.  

2.2.1. The Reverse Generalized Processor Sharing 
(RGPS). This algorithm is a reversal algorithm of 
Generalized Processor Sharing on the condition that every 
connection is backlogged.  The original definition of GPS 
is:  
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The RGPS is used to schedule one queue to multiple 
connections with service weights. It sends infinitesimally 
small amount to each connection. In RGPS, every 
connection is backlogged, because we intend to use all 
connection resources. From the RGPS definition, we have 
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This formula means all connections strictly share the 
service in proportion to their weights. RGPS is a perfect 
load balancing algorithm, but it is unimplementable since 
we must schedule packet, not infinitesimal. However, the 
concept of RGPS can be used to evaluate other algorithms. 

2.2.2. The Reverse Weighted Round Robin (RWRR). 
The Weighted Round Robin (WRR) algorithm is used to 
serve a packet instead of infinitesimal from each 
backlogged queue in turn. The RWRR algorithm is 
reverse of the Weighted Round Robin. It sends packets to 
connections in turn with normalized weights. The traffic 
load is perfectly balanced if the packet size is fixed. 

In SAN, the proportion of the similar sized packets is 
high. Thus we can use RWRR algorithm to approximate a 
perfect load balancing algorithm. The RWRR algorithm 
needs less computation overhead and the traffic load is 
roughly balanced when the packet size is similar. The 
RWRR work complexity is ο . )1(

2.2.3. The Reverse Weighted Fair Queuing (RWFQ). 
This algorithm is a reverse of Weighted Fair Queuing 
algorithm [12]. The RWFQ algorithm serves channels in 
order of their finish number (or finish time), where the 



finish number is computed by RGPS algorithm. The 
channel with the minimum finish number is selected to 
send next packet. The weighted finish number equation is 
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where T is the service time of k th packet on 
connection i , is the length of k th packet that 
transmits on connection i at time t , is the link service 
rate, φ  is the weight of the connection i . The RWFQ 
algorithm is better than RWRR when packet size is not 
fixed. The work complexity of RWFQ is ο . 
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2.2.4. The Reverse Deficit Round Robin (RDRR). 
This algorithm is a reverse of Deficit Round Robin 
algorithm [ 13 ]. It uses a Deficit Counter (DC) and 
quantum of service by measuring the weights of the 
channel. Each time a channel been selected, the DC is 
incremented by the quantum for that channel. Packets are 
sent to the channel and its DC is decremented by the 
packet size, till the DC becomes non-positive, then the 
next channel is selected. The RDRR work complexity is 
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In our experiment, all three algorithms RWRR, RWFQ 

and RDRR are implemented. Each algorithm has its 
advantages. The RWRR algorithm is simple and efficient 
for scheduling large number of channels with fixed packet 
size. The RWFQ algorithm conducts a perfect load 
balancing; it can be used when storage system has 
excellent computation power. The RDRR algorithm is a 
better solution when many channels with various packet 
sizes are used and computation resource is constrained. 
These three algorithms are easy to implement for load 
balancing. 

2.3. Data flow priority algorithm on sender 

Between first and second scheduler, we merge the data 
flows into one virtual data channel (Figure 1. data flow 
priority), so that the packets of the conversation can 
migrate among the network interface without being aware 
of the underlying physical channels. Furthermore, 
keeping multiple conversations on one virtual channel is 
more efficient for packet transmission.  

Here a service discipline [14] can be used to provide 
priority for the data flows merging. In this paper, all data 
flows are assigned the same priority to demonstrate the 
flexibility and the scalability of the multiple addresses 
parallel transmission.  

2.4. Data flow recovery -- hashing addresses 
restoring and reordering on receiver 

In the receiver node, data flows are restored and 
reordered when packets arrive at different network 
interfaces. Here, a hashing address searching algorithm 
(Figure 1. hashing table address restore) is used to restore 
the data flow and provide a bounded searching delay. The 
search complexity of a chaining with separate lists is 

, where  is the address number, and l is the list 
numbers. 
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After the data flows been restored, the out-of-order 
packets must be reordered (Figure 1. data flow reordering) 
by receiver. Unlike in a normal network [15], the out-of-
order rate in parallel architecture can be large and 
predictable. In parallel transmission, out-of-order delivery 
can be caused by different channel bandwidths and packet 
sizes. The minimum reordering buffer size W is computed 
by 
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where is the round trip time that a 
maximum sized packet used to pass through the minimum 
bandwidth channel, N is the numbers of the channels, ϖ  
is bandwidth of each channel.  

)(RTTMax

i

Although the out-of–order rate could be large, the out-
of-order distance is small and packets can be reordered 
efficiently without affecting the transmission performance. 

2.5. Fault tolerance and detection algorithms 

Since the multiple addresses parallel transmission 
architecture uses redundant channels, the scheduler can 
provide fault tolerance by detecting channel fault and 
rescheduling data flows to usable channels. The fault 
detection algorithm can use either hardware based, 
software local loop back and/or remote acknowledge 
detection methods. With different computation 
complexity, the failure of the first hop link, the nearest 
switch and the full data path could be detected.  

3. Implementation and results 

To demonstrate the multiple addresses parallel 
transmission protocol (MAPTP) in a SAN, we use the 
HyperSCSI [1] network storage protocol as the upper 
layer and the Ethernet link layer as the sub channel. The 
HyperSCSI protocol provides a virtual SCSI interface 
service by packing SCSI commands and data into 
network packets.  



The MAPTP protocol is implemented as a Linux 
kernel module. The test bed of the MAPTP is a packet 
switching network composed of Fast Ethernet (FE) and 
Gigabit Ethernet (GE) links. The storage device server 
and clients are connected to the switch with differing 
numbers of links. We measure the performance by testing 
the Disk read speed of the HyperSCSI network storage 
device.  

3.1. Disk read performance in asymmetrical and 
symmetrical parallel network. 

The tests used HDPARM, DD and IOZONE to read 
5GB data. With more channels added, the asymmetrical 
and symmetrical disk read performance of the HyperSCSI 
device increases nearly linearly (Figure 2, 3) until the 
limit of the system performance is reached. The 
asymmetrical performance is slightly better, because it 
use fewer network interfaces, which means fewer 
schedule overhead. 
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Figure 2.  One GE - Multiple FEs 
asymmetrical disk read performance 
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Figure 3.  Multiple FE pairs symmetrical 
disk read performance  

With all three scheduling algorithm RWRR, RDRR 
and RWFQ, HyperSCSI bandwidth can be increased 
above 380% when 4 links are used. Thus the network 
utilization rate of the multiple channels HyperSCSI is 
95%. The overhead caused by MAPTP is roughly 5% per 
channel, which is acceptable when compared to the 
bandwidth increase. Because in SAN, most packets have 
similar size, all three algorithms have similar performance 
result. All these algorithms can be used for load balancing 
with little computation overhead. 

3.2. Out-of-order rate analysis 

From figure 4 and 5, we found that the out-of-order 
rate does not affect the disk read performance before the 
system limit is reached. And the out-of-order rate 
decreases when more channels are used. When using the 
FE pairs, the out-of-order rate decreases dramatically.  
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Figure 4.  One GE - Multiple FEs 
asymmetrical out-of-order rate  
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Figure 5.  Multiple FE pairs symmetrical 
out-of-order rate  



The reason of this rate drop is that in each schedule 
round, the schedule delay between sequential packets 
increase with more channels added. Larger schedule delay 
between packets means the probability of out-of-order is 
small. With more channel added, the out-of-order rate can 
drop rapidly. Similar result can also be observed when the 
packet size been increased and cause larger schedule 
delay. With packet size increased, the out-of-order rate 
also dropped. 

3.3. Multiple clients - multiple channels disk read 
performance 

For the multiple clients and multiple channels load 
balancing tests, one server with GE and two clients with 
multiple FEs are used. The figure 6 shows that the load is 
evenly balanced on both clients and channels. The sum of 
the disk read performance can approach the system 
maximum throughput when 6 FEs are used. 
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Figure 6.  Load balancing on two clients 
with multiple FEs 

4. Future work 

Future research work may focus on QoS applications 
in parallel transmission packet switching SAN. More 
study should be conducted on out-of-order feature in a 
parallel transmission.  

5. Conclusion 

In this paper, we provide a theoretical model and an 
implementation demonstrating the multiple addresses 
parallel transmission architecture in action. This 
architecture supports flexible performance scaling in a 
packet switching network. As such, SAN topology using 
this structure will have good scalability and fault 

tolerance but without much additional complexity. In 
addition, by supporting Ethernet MAC and IP packets, the 
network storage devices can work in both LAN and WAN 
environments. This multiple addresses parallel 
transmission architecture could be a key factor in 
deploying SANs which can provide a highly scalable 
bandwidth with full redundancy over switched, parallel 
data paths. 
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