

Storage Virtualization

Peter A. Rigsbee StorageTek

April 15, 2002

Agenda

Definitions

- Separating hype from reality
- Defining virtualization
- Customer benefits
- Taxonomy
 - Overview
 - Different types of virtualization, examples
- Futures

Virtualization – Definitions

Storage Networking Industry Association, 2002

Virtualization – Definitions

"First IT buzzword of the 3rd millennium"

Storage Networking Industry Association, 2002

- Virtualization Hype
 - New and cool invention
 - Products and solutions
 - Will solve all your IT problems

Virtualization – Hype New and cool invention

Reality
New – in places; simple concept

Products and solutions

Will solve all your IT problems

Virtualization isn't New

Computer systems have virtualized resources for years

Memory

Processors

Virtualization is pretty simple

- Maps a virtual resource to a physical resource
- Complexity comes from:
 - Reliability
 - Performance
 - Utilization
 - Monitoring
 - Administration

- Virtualization Hype
 - New and cool invention

- Reality
- New in places; simple concept

- Products and solutions
- Will solve all your IT problems

Technology, not a solution

- Virtualization Hype
 - New and cool invention
 - Products and solutions
 - Will solve all your IT problems

Reality

- New in places; simple concept
- Technology, not a solution
- May solve some of your IT problems

Virtualization – Definitions

"First IT buzzword of the 3rd millennium"

- An abstraction of storage that separates:
 - Host view
 - Storage system implementation"

Storage Networking Industry Association, 2002

Physical Storage has Limitations

- All storage technologies have physical limitations that cause business inefficiencies
 - Performance
 - Capacity
 - Reliability
 - Names
 - Price

Virtualization Abstracts Them Away

- Virtualization abstracts away those limitations to:
 - Present a simpler view of storage to servers
 - Separate storage management from server management
 - Allow storage administrators to deal with these limitations
 Allow server administrators to ignore these limitations
 - Reduce total costs of administration

Storage Administration Problem

Analyst predictions continue to show dramatic increases in storage growth, while IT administrative staff will grow little (if at all)

Virtualization offers customers the ability to address this gap

Virtualization – Benefits

Increased availability

- Increased performance
- More flexibility
- Reduced administration
- Reduced cost of ownership

Virtualization Taxonomy

Virtualization – What?

(Basic) disk virtualization
Clean, linear view of disk blocks
Disk block virtualization
Combine physical disks at the block level
File/record virtualization
Combine files and filesystems
Tape virtualization

Better utilization of tape components

Virtualization Vendors

Virtualization – Where?

- Storage, Network, Server?
- No single right answer, depends on:
 - Granularity of virtualization:
 - Smaller => closer to the device
 - Combining/sharing devices => network or server
 - Sharing across servers => network or storage
- Possible to combine virtualization that resides in different places

In-band or out-of-band?

asymmetric

- Separates control and data paths
- Avoids single point of failure

(Basic) Disk Virtualization

Low-level virtualization

- Has been around for many years
- Disk firmware presents a clean, linear view of disk blocks
 - Don't have to worry about cylinders, heads, sectors
 - Don't have to worry about "holes" due to media defects

Operating systems present a clean, linear view of disk

- File (stream of bits)
- Operating system (filesystem) keeps track of where it is on disk
 - Or in memory in a disk cache
- Storage applications extend this concept
 - Hierarchical storage managers (HSMs)
 - Backup applications

Disk Block Virtualization

Higher level virtualization

Most common form of storage virtualization

- Storage- and server-based products have been around
- Network-based products are getting most of today's hype

Present "virtual disk" that combines physical disks at block level

- Increased reliability
- Increased performance
- Increased capacity
- Fewer points of administration

Disk Block Virtualization Approaches

RAID

- Combine disk for higher reliability and performance
- Storage-based virtualization
- Virtual Disk
 - Over-allocate virtual volumes, allocate physical space on write
 - Storage-based virtualization
- Volume Managers
 - Virtual volume made up of physical volumes
 - Server-based virtualization
- Virtualization Appliances
 - Features of both Volume Managers and RAID
 - Network-based virtualization
 - Both in-band and out-of-band implementations
 - Some vendors offer appliances, others software-only

Example: StorageTek SVA

Storage-based, Disk Block virtualization (virtual disk)

Example: DataCore SanSymphony

Example: StoreAge SVM

File/Record Virtualization

Highest level of virtualization

Products in the market are often not positioned as virtualization

File virtualization (NAS)

- Present a file that may be made up of multiple files

File system virtualization

Present a virtual file system that may be made up of multiple file systems

Example: NetApp filer

Storage System

Example: Sistina GFS

Tape Virtualization

Higher level virtualization

Not as visible or common as disk block virtualization

Not as many vendors offer these products

Tape media virtualization

- Present a tape cartridge that is as fast as disk
- Write data to disk; then combine and stage to tape
- Tape drive virtualization
 - Present a tape drive that's always there and never changes

Example: StorageTek VSM

Storage-based, Tape Media virtualization

Example: StorageTek SN6000

Network-based, Tape Drive virtualization

Virtualization Taxonomy

Futures?

Storage virtualization will continue to thrive and evolve

- Storage administration problem (shown earlier) is only going to get worse
- Network-based virtualization will continue to move forward
 - Expect to see consolidation as market selects products and vendors
 - Storage- and server-based virtualization products will also remain viable

Storage Virtualization

- A technology that is delivered as part of a solution
 Not a papacea
- Not a panacea
- An abstraction of storage that separates host view from storage subsystem
- Can reduce administration and total cost of ownership
- Can be found in servers, network, and storage devices

Questions?