File System Benchmarks, Then, Now, and Tomorrow

Thomas M. Ruwart
Ciprico, Inc.

I/0 Performance, Inc.
Minneapolis, Minnesota
tmruwart@ciprico.com

Ph: +1.763.551.4000

Abstract

With the growing popularity of storage area networks (SANs) and clustered, shared file systems, the file
system is becoming a distinct and critical part of a system environment. Because the file system mitigates
access to data on a mass storage subsystem, it has certain behavioral and functional characteristics that
affect 1/O performance from an application and/or system point of view. Measuring file system
performance is significantly more complicated than that of the underlying disk subsystem because of the
many types of higher-level operations that can be performed (allocations, deletions, directory searches,
...etc.). The tasks of measuring and characterizing the performance of a file system is further complicated
by SANs and emerging clustering technologies that add a distributed aspect to the file systems themselves.
Similarly, as the cluster/SAN grows in size, so does the task of performance measurement. The objective of
this study is to identify some of the more significant issues involved with file system benchmarking in a
highly scalable clustered environment.

Introduction

This paper discusses an approach on measuring file system performance in a large-scale, clustered
supercomputer environment — more specifically the 30TeraOp supercomputer being built at Los Alamos
National Laboratories (LANL) during the latter half of 2001 as part of the Accelerated Strategic Computing
Initiative (ASCI). This supercomputer will have approximately 600 Terabytes of disk storage connected to
a cluster of over 11,000 processors running a UNIX variant and a multi-layer distributed file system. This
environment stresses the capabilities of a file system benchmark program and demonstrates what happens
to file system I/O as the system size scales to very large sizes.

At the outset of this study it was necessary to examine the capabilities of the various file system
benchmarks currently produced and/or used by commercial organizations. These include old favorites such
as Bonnie and IOZONE as well as the SPECFS, PostMark, AIM Suite VII, LMBench, Hbench, and
IOMeter[1]. It was determined quickly that none of these benchmarks had the capability to meet the
requirements dictated by the architecture of the 30Terop machine. It was also apparent that none of these
benchmarks could, for one reason or another, be easily modified to operate effectively in the targeted
environment. Therefore, the objective of this study is to determine how to design a benchmark suite that
can be used to gauge the bandwidth and transaction performance of a highly distributed, hierarchical,
parallel file system and the underlying I/O and storage subsystem.

This paper summarizes the high-level design issues involved in the development of a program suite that
can benchmark the storage and I/O subsystems as well as the file system hierarchy above them. This paper
begins with a description of the overall hardware infrastructure of the 30TeraOp machine. This is followed
by descriptions of the I/O Hierarchy and File System Performance. A short discussion of Benchmarking
versus Characterization as well as the Perspective from which performance is view is presented. Other
various issues that affect performance results such as Caching effects and File System Aging are briefly
described in order to keep them visible. The remainder of the paper describes some of the logistics of
managing workload generators, collecting performance data, and analyzing and generating reports.

Hardware Infrastructure Issues

The task of gauging the performance of a file system used to be relatively simple when the files systems
were all local to a computer system. With the advent of physically shared disk subsystems however,
measuring the performance of a file system is becoming significantly more complex. This is due to the fact
that the number of measurement points has increased from one computer system to many computer systems
and that they share access to the disk subsystem, or more importantly the data, at many levels.

117

Furthermore, they can share other parts of the disk subsystem such as controllers, paths, switches, ...etc. or
they can have entirely separate connections but still share the media or data.

In order to make sense of any application-level benchmark suite, the performance characteristics of the
underlying hardware infrastructure must be separated from the performance characteristics of the file
system. It is also critical to understand how the file system interacts with the underlying hardware
infrastructure. In the case of the 30TeraOp machine, there are several pieces of the hardware architecture
that need to be considered:

e Compute nodes

e System Area Network or Cluster Fabric

e I/O Nodes

e Storage Area Network or Storage Fabric

e Storage Devices
Each of these pieces has certain functional and performance limits that need to be evaluated and understood
in isolation as well as when they operate as a system in their final configuration. For example, it is
necessary to determine the performance characteristics of a single disk array on a single I/O node and then
scale the number of disk arrays up to the configuration maximum to determine any performance anomalies
that result from such scaling. A similar exercise is required for evaluating the performance scaling of the
Storage Area Network as I/O nodes and disk arrays are added to its fabric. And finally, the performance of
the compute nodes and the System Area Network needs to be evaluated as the number of compute-nodes
accessing 1/0 nodes scales.

Diagram 1. The generalized
architecture of the 30TeraOp super
computer cluster at Los Alamos
National Labs. There are N Computer
Nodes tightly coupled through a
cluster fabric to M I/O nodes that are
connected to X storage nodes through
a Storage Fabric.

The I/0O Hierarchy

First, it is necessary to make a distinction between the “file system hierarchy” and the underlying /O
subsystem. In general, a file system is essentially an application of sorts that issues I/O requests to the
underlying I/O subsystem on behalf of the user application. However, in the architecture of the 30TeraOp
machine with the hierarchy of multiple file systems this distinction becomes blurred. The user application
interfaces with the top-level file system that, in turn, interfaces with another file system below it instead of
the storage subsystem. This “lower level” file system then interfaces with yet another file system below it
and then finally to the actual storage subsystem hardware (see Diagram 1).

The file systems within this hierarchy are different from one another in functional and performance
characteristics. The top-level file system is a “parallel” file system in that it understands how to have
multiple threads of a single process concurrently accessing different parts of a single file. In general this
works fine for a small number of threads, say less than 100. However, on the 30TeraOp machine, the
number of threads trying to access a single file could be 10,000-100,000. Imagine the start-up time for
10,000 threads each issuing an open for a single file across several hundred separate compute nodes (the M

118

to N problem). Another scenario is that of a single compute node attempting to access all the 10,000 pieces
of a single file through all the I/O nodes (the 1 to N problem). A third scenario is for all the compute nodes
to access data from a single I/O node (the M to 1 problem). Given the possible number of computer nodes
(M) being in the hundreds to thousands and the number of I/O nodes (N) being in the tens to hundreds, the
number of possible scenarios suggests that a single benchmark run will not be sufficient to describe the
performance and behavior of all the file system levels in this environment. Therefore, it is necessary to not
just measure the performance of the file system from the application’s point of view but to characterize it
with detailed performance measurements of all the components directly related to an I/O operation. In other
words, it is necessary to measure the performance of each of the file system levels in isolation (if possible)
and then as a composite of all file system levels.

File system performance

File system performance in general can be broken up into two major categories: Meta-data and User
data performance. Meta-data performance relates to operations such as opening, closing, creating, deleting,
space allocation, and obtaining or updating the status or attributes of a file. These operations do not involve
accessing any of the actual user data in the file. Meta-data itself includes all the data structures required to
represent a file on a storage device (i.e. inodes, directories, super blocks, file access tables, ...etc.) User
data performance strictly involves reading or writing the actual data within the file.

The 30TeraOp machine incorporates a file system hierarchy consisting of several levels of file systems.
Generally speaking, at the top of the hierarchy, there is a parallel-type file system that runs on the compute
nodes that gives a “parallel” application the ability to have multiple threads simultaneously access different
parts of a single file in parallel. Below the parallel file system is a file system that presents single consistent
view of all the I/O nodes as a single file space. On each of the I/O nodes there is a file system that
consolidates access to the storage under the control of each of the I/O nodes.

Therefore, when an application makes a request to open, close, read, or write a file in this environment,
the request is propagated through each of these file system levels before it reaches the actual storage media.
This can have a significant impact on both the meta-data and user data performance. This is one aspect of
the 30TeraOp file system architecture that requires such a significant effort in benchmark suite design.

Benchmarks versus Characterization

File system benchmarks, in general, provide a single value or a limited number of values that are
intended to represent the overall performance of the file system. However, this is somewhat like trying to
reduce a vector to a scalar in the sense that a significant amount of important detail can and does get lost in
the translation. In order to get an accurate assessment of the performance of a storage subsystem it is
necessary to perform a benchmark over a range of values of specific parameters. The result of this is a
performance profile or characterization as a function of some parameter.

There are many parameters that determine how a single I/O operation interacts with the computer
system as a whole. It is this interaction that ultimately determines the performance of the I/O operation.
Since many of these parameters are dynamic variables it is more useful to see the performance of the file
system as a function of some of the more significant parameters. Significant parameters are those that have
more of an impact on performance than others.

For example, the Request Size may have more of an impact on the bandwidth performance of the
application than the disk location being accessed. This is because the “request size” that the application
gives to the top-level file system to transfer data between the application memory buffer and the storage
media goes through several changes and realignments before the request is received by the storage
device(s). The application may, for instance, request a 16MB transfer. The file system may break this up
into sixteen 1MB requests to the underlying logical device driver. The device driver may split the 1IMB
request into four 256KB requests each to one of four disk arrays. Finally, the four disk arrays then divide
their 256KB requests into eight 32KB requests that are delivered to the disk drives within the disk array.
Thus the 16MB request that the application made turned into many 32KB requests that operate both in
parallel across all the disk drives as well as serially within the disks if the width of the logical device is
smaller than the original 16MB request.

Because of the request size manipulation that occurs along the life cycle of an application data transfer
request, the performance that the application sees depends heavily on the requested transfer size. One
particular transfer size may perform well while other transfer sizes may have a dramatically different

119

Graph 1 XLV Logical Volume Striped 8-w ide using a 128KByte Stripe Width
Sequential Reads
N MM
120
o >
100
« 80
o
&
[17]
2 60|
40
20
0
“ITERBRETEEZARIEREEEERE Y s EEREeREE AR
TTAS NG00 00002 FTFAag oz ReESes S
Request Size in 1024-byte blocks

performance level. Graph 1 demonstrates how dramatically the performance levels can change as a function
of request size. This graph shows the bandwidth performance of an application reading from an 8-wide
striped logical volume as a function of request sizes ranging from 2KB to 2MB in increments of 2K bytes.
It is apparent that a small change in the request size results in a potentially large change in performance — at
the right side of the graph the performance varies from 140MB/sec down to 45MB/sec with only a 2KB
change in request size.

Perspectives

The perspective is the point of view from which the performance is measured. Three of the more

generally accepted perspectives are:
1. Application
2. System
3. Storage Subsystem

The Application perspective is what of most of the file system benchmarks represent. From this
perspective all of the underlying system services and hardware functions are hidden. This perspective
includes the all the cumulative effects of other applications running at the same time as the benchmark run.
This is also true for applications running on other machines that may be simultaneously accessing the
storage subsystem under test. From this perspective the results of a benchmark can be skewed due to
undesirable interactions from these other applications and other machines.

The Application perspective can also divide I/O operations into the two distinct categories (Meta data
and User data) based on the type of higher-level operation being performed. The Application interface to
the file system is generally through high-level system calls such as open, close, read, write, and create.
There are also higher level system calls that perform such operations as rename, create directory, remove,
and lookup a name. It is the performance of these operations that ultimately determine the overall
performance that the Application sees for both meta data and user data operations.

The System perspective is viewed by running system-monitoring tools (such as sar, osview, or filemon
for example) during a benchmark run. These tools provide coarse-grained real-time monitoring of the
system I/O activity for such high-level operations as file reads and writes as well as the number of
operations actually sent to the storage subsystem on a device-by-device basis. From this perspective it is
possible to see and measure the effect of other applications that are running concurrently with the
benchmark program. Furthermore, with some of the more sophisticated system monitoring tools, it is
possible to monitor the activity on other systems that may be sharing access to the storage subsystem under
test. However, there is still a problem with getting a complete view of all the systems on a common

120

reference clock in order to better understand the interaction of all the systems with the shared storage
subsystem.

The Storage Subsystem perspective is the most difficult to monitor since there are not many tools
available to collect performance data from the storage subsystem. Furthermore, the storage subsystem can
be split into two pieces: (1) the interconnect fabric and (2) the storage devices. Each of these pieces need to
be monitored independently because they represent two areas of possible resource contention. The
monitoring points for the fabric are the fabric switches since all the I/O traffic flows through these points.
The storage subsystem can be monitored at the storage device controllers that connect into the fabric.

Given these three observation perspectives it is possible to sort out the affects of other parts of the
system such as caching, disks, interconnect speeds, process contention, ...etc.

Caching Effects

There are several levels at which caching is used to mitigate performance issues with the underlying
storage layers. These include the file system buffer cache, disk array controller caches, and disk drive
caches.

The file system with its buffer cache is on the top layer of the cache hierarchy. The file system buffer
cache is generally some significant amount of physical system memory that is used to hold large chunks of
data from files being accessed through a file system manager (i.e. UFS). For example, when an Application
or benchmark program issues a read system call most file system managers will read data into the file
system buffer cache and then copy the requested data into the user buffer. Similarly, for write operations,
the data is copied from the user buffer into the file system buffer cache and later written to the storage
media. For normal applications this is acceptable behavior but when running benchmarks it is necessary to
understand when the cache is being used and when it is not. Otherwise, the results of the benchmark can be
rendered meaningless.

The disk array controller and disk drives have separate caches that are not connected or controlled by
the file system manager or the device drivers. It is under the control of the disk array or disk drive
controller and there are many different control algorithms that determine how it is used and how effective it
is. The configuration and usage modes of the cache are purely vendor-dependent and model specific. It is
mentioned here because it is important to understand how the cache, if present, is being used during a
benchmark run so that its effects can be taken into account when setting up the benchmark runtime
parameters and/or interpreting the results.

File System Aging Effects

Over time, a file system that has had files repeatedly created and deleted can exhibit side effects related
to this aging (fortunately one of them is not forgetfulness). A file system that ages in this way can get
highly fragmented as is commonly found on FAT32 and NTFS file systems for example. On smaller file
systems it is possible to “defragment” the file systems because the ratio of the size of the file system to the
data rate of the underlying disk is generally quite low (on the order of 2000 for a standard 20GB disk). This
means that it is possible to read and write all the data from the disk subsystem in order to rearrange it
sufficiently to decrease the fragmentation.

On a very large-scale supercomputer system such as the 30TeraOp machine this is not practical because
the ratio of the size of the file system to the achievable transfer rate of the underlying hardware is ten times
that of the PC example. This means that it could take on the order of days to defragment the entire file
system which could be a significant burden on the available resources. However, depending on the data
layout and application accessing the files, this may or may not present a performance problem which makes
defragmentation optional. Therefore, it is necessary to be able to test and/or monitor a file system’s
performance as it ages in order to determine when defragmentation is really necessary.

Workload Generator Control Mechanisms

When running multiple workload generators it is necessary to control their activities to achieve the
desired behavior. For the single machine case the control mechanism is relatively simple and straight
forward. In general, a single master control process passes high-level instructions and parameters to each of
the workload generators on the machine, lets them run, collects aggregated results, and displays the
performance information at the conclusion of the run. The same process is true for a cluster of machines but

121

Diagram 2.

it is important to understand how the control process scales as the number of machines in the cluster
running workload generators increases.

In the case of a large cluster, it may be necessary to manage several hundred to several thousand
workload generators. The management process essentially involves starting the workload generators (and
optionally terminating them) and collecting, correlating, and reporting the results at the conclusion of the
run. This process can take up to several minutes for a large number of workload generators if the process is
serialized. However, if the process is managed as a binary tree for example, it is possible to reduce this
startup time from order N to order log(N). Diagram 2 shows how a Master manager starts a Master
manager on each of two other machines which, in turn, start Master managers on each of four machines,
and so on. This significantly decreases the resources needed on any single machine in the cluster to start up
all the Master control processes in the cluster.

Unsynchronized/Synchronized Workload Generators
A workload generator is a program that generates I/O traffic according to a very specific set of parameters.
The most important parameters that have a direct impact on the observed bandwidth or transaction
performance of the individual workload generator include:
e Size of a transfer
Number of transfers to generate
Access pattern to use for the transfers
Percentage of read versus write operations
Temporal access patterns — bandwidth or transaction rate

Other parameters that can have an indirect impact on the observed performance include:
e Processor allocation
e Memory allocation parameters
e Process priority parameters
e Synchronization parameters

When running on a single isolated machine (as opposed to a cluster of machines), multiple concurrent
workload generators can be synchronized with each other so as to achieve the correct overall temporal
access patterns desired. A temporal access pattern can be described as the number of operations per unit
time that are issued by the workload generator. The rate at which the operations are issued from a particular
workload generator can be tied or synchronized to those issued by other workload generators. This

122

synchronization can be done using several different methods but the use of semaphores, shared memory
spaces, message-passing interfaces, and signals are some of the more common methods.

Furthermore, it is important to note that multiple concurrent workload generators on a single machine
share a common reference clock. This allows for the cross correlation of the detailed time-stamp trace data
that each of the workload generators can produce during a run. By cross-correlating these results it is
possible to show how the workload generators interact.

In a multiple-machine environment the task of synchronizing multiple workload generators across the
machines becomes more complicated. In order to be able to cross correlate time stamped trace data from
workload generators on different machines it is necessary to define one machine as having the master
reference clock to which all other machines are synchronized to. One workload generator (or workload
control process) from each machine is responsible for synchronizing to the master reference clock machine
and disseminating this information to all other workload generators that may be running on the same
machine.

The process of determining a global time value is relatively simple and takes very little time for a single
process. Given that there is a single machine defined to be to master time-server, a machine wanting to
synchronize with the master machine would send it several requests for the master time clock value. Given
the time values from the master clock machine and the round-trip time to actually get these values, it is
possible to determine a global time that would be approximately the same for every other machine
accessing the same master clock machine. Using a traditional 100Mbit Ethernet and standard PC hardware
running 700 MHz Pentium III processors it is possible to get a global clock that is accurate to within +£100
microseconds. Given the time to processes most I/O operations to a disk subsystem are greater than 1
millisecond (or 1000 microseconds), the resolution of this global clock is sufficient for the purposes of I/O
performance testing.

One minor issue that arises from the use of a single machine to act as the master reference clock is that
as the number of machines in a cluster running workload generators increases, the time that it takes to get
the master reference clock to all the machines increases as well. The main reason for this is that the process
of determining a global time in a cluster of many machines should be serialized among those machines in
order to get the most accurate value for this clock. If the time it takes to determine a global clock for a
single workload generator on a traditional 100Mbit Ethernet is, for example, .25 seconds for any single
machine to determine its global time, then the time it takes to synchronize all machines properly would be
N times .25 seconds. As N gets large, say 1000 for example, then the total time to get the processes
synchronized and started can be on the order of minutes. This time can of course, be significantly reduced
by using other faster, lower latency networks if available. This is mentioned only to show one potential
problem area when scaling from a single machine to a large cluster of machines.

Performance Data Collection

Two issues to consider when collecting performance data are the type of data collected and when to
collect it. Concerning the first issue, there are essentially two types of data to collect from a workload
generator: Aggregate data and Time-Stamped data. The second issue of when to collect the data has to do
with moving the performance data between the workload generators and after all the workload generators
have quiesced so as not to inadvertently skew the results by moving data over the same networks that are
being measured.

Each workload generator runs a set of workload threads, each of which can generate performance data.
This performance data is collected by the workload generator and is passed back its parent or master
workload generator for further processing. The aggregate performance data is continually passed up the
hierarchy until it reaches the top of the control “tree” at which time it is analyzed and displayed. This
hierarchical approach is used to efficiently handle small amounts of performance data that represents the
aggregate results but not the large amounts generated by the time-stamping operations which could easily
result in several megabytes of data per thread.

The aggregate performance comes from three different levels in the hierarchy:
e A single thread of a workload generator
e A combined average of all threads in a workload generator
e A combined average of all workload generators

123

Global Results Collection and Display

= 1T LB

r2 mmm W

Wtiklc?d ienerator 1 wcﬁkkﬁd ﬁenerato CT(ITd ieneratf M
- = = | - = = | - = = -1
5 =5 5 = 5 =5 5 = 5 =5 I =
® @ Ommm O ® @ O mmm O ® @ O mmm O
0 90 9 Q 0 90 9 Q Q 0 9 Q
2 Qo Q (-} 2 Qo Q (-} 2 Qo Q Q.
= N @ 2 = N @ 2 = N @ Z

The time-stamped data is important for visualizing the behavior of individual workload threads as well
as the interaction of workload threads during a single run of concurrent workload generators. Graph 2
shows the time stamped results from four individual workload generators running simultaneously on four
different machines (one thread per machine). Each dot on the graph is an individual I/O event that
represents the instantaneous bandwidth performance for a specific I/O operation as a function of the time
that the operation completed. Upon close observation, it can be seen that hosts 1, 2, and 4 generally
maintain approximately 55MB/sec each while host 3 seems to continually lag behind at approximately 30
MB/sec until the very end (at time 1500 ms) where hosts 1, 2, and 4 stop issuing 1/O operations and host 3
utilizes the entire 160MB/sec available bandwidth. Without this time-stamp data it would be difficult to see
the relationship and behavior or interaction of the four host computer systems.

Graph 2 Time Correlated Scatter Graph of Data Rates Plotted at Completion Times
180
& Host 1 .
160
M Host 2
140 Host 3
120 ©® Host 4
¢ 100 = =
0 [}
1]
60
40
[]
20 o A .= S [
0
0 200 400 600 800 1000 1200 1400 1600
Time in 20ms increments

Run Monitoring and Report Generation

During a run it is helpful to monitor the progress of the benchmark during the run. However, the
amount of data that is reported during the monitoring process as well as where it is reported should take
into consideration the issues of data movement mentioned in the previous section. The monitoring process
must not consume so many resources (compute, network, ...etc.) that it interferes with the benchmark.
Ideally, the monitor process should be run on a machine separate from the machines running the benchmark
and the amount of performance data being collected by the monitor program is kept to a minimum.

Once a benchmark run is complete it is reasonable to collect performance data onto a single machine for
the purposes of analysis and report generation. There are different levels or reporting that are important to
the benchmarking and characterization efforts. These include:

e Summarized report of the run

124

e Detailed report of the run from each node
Detailed report of trace data from each node
Analysis tools for the detailed trace data

The Summarized and detailed reports from each run are necessary to understand the overall
performance of the system and all the operating and configuration parameters used during the run. Given
the amount of time-stamped data from a large run it is necessary to build an entire post-run analysis and
knowledge-extraction system to aid in the interpretation of this data. At this time of this writing this
capability has not been implemented.

Summary

The 30TeraOp machine is scheduled to be brought online later in 2001 with its complete I/O subsystem.
The I/O architecture of this machine presents many valuable lessons in scaling 1/0 in a clustered
environment. One such lesson is the process of designing and running an I/O benchmark program that is
attempting to mimic the behavior of an application or a class of applications, interpreting the results, fine
tuning the I/O subsystem and/or file system(s), and re-running the benchmark in order to achieve a certain
level of I/O performance is very labor intensive. The lesson learned is that ideally, the applications
themselves should become the I/O performance benchmarks. Because of the scale of the 30TeraOp
machine, a detailed, real-time system-perspective I/O monitoring capability would be an immense help in
identifying performance bottlenecks that occur for different applications because it is difficult if not
impossible to see all the I/O anomalies from the benchmark itself. This real-time information could be fed
back into the system in an effort to dynamically adjust whatever is necessary to improve the I/O
performance of the application that is running. And after all, running the application is what counts, not the
benchmark program.

References

[1] Tang, Diane, “Benchmarking Filesystems”, Thesis, TR-19-95 Harvard College
Cambridge Mass, April 1995

[2] Smith, Keith A. et al, “File System Aging — Increasing the Relevance of File System
Benchmarks”, Proceedings, 1997 ACM SIGMETRICS Conference, June 1997,
ACM

[3] Bancroft, Martha, et al, “Functionality and Performance Evaluation of File Systems
for Storage Area Networks(SAN)”, Proceedings, 17" IEEE Symposium on Mass
Storage Systems / 8" NASA Goddard Conference on Mass Storage Systems and
Technologies, April 1999, IEEE Computer Society Press

125

126

	Welcome
	Author Index
	Session Index
	Papers
	Grids
	Stockinger
	Allcock
	Moore

	Storage Applications A
	Jones
	Stone
	Lautenschlager

	File Systems
	Iyengar
	Lim
	Ruwart

	Benchmarks
	Andrews
	Gabrielyan
	Bancroft

	Storage Applications B
	Bird
	Allsman
	Sterling

	Emerging Technologies
	Madhyastha
	Zhang
	Chao

	Bratt Luncheon Talk
	Posters
	Hughes
	Andrews
	Tse
	Cha
	Neil
	Shinkai
	Dashti
	Mueller
	Dwivedi
	Haddon

	Vendor Presentations
	Naegel
	Carino

