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Abstract

In computer systems today, speed and responsiveness is often determined by net-
work and storage subsystem performance. Faster, more scalable networking interfaces
like Fibre Channel and Gigabit Ethernet provide the scaffolding from which higher
performance computer systems implementations may be constructed, but new think-
ing is required about how machines interact with network-enabled storage devices.

In this paper we describe how we implemented journaling in the Global File Sys-
tem (GFS), a shared-disk, cluster file system for Linux. Our previous three papers on
GFS at the Mass Storage Symposium discussed our first three GFS implementations,
their performance, and the lessons learned. Our fourth paper describes, appropriately
enough, the evolution of GFS version 3 to version 4, which supports journaling and
recovery from client failures.

In addition, GFS scalability tests extending to 8 machines accessing 8 4-disk enclo-
sures were conducted: these tests showed good scaling. We describe the GFS cluster
infrastructure, which is necessary for proper recovery from machine and disk failures
in a collection of machines sharing disks using GFS. Finally, we discuss the suitability
of Linux for handling the big data requirements of supercomputing centers1.

1 Introduction

Traditional local file systems support a persistent name space by creating a mapping be-
tween blocks found on disk drives and a set of files, file names, and directories. These file

1The work by Grant Erickson and Manish Agarwal on GFS was performed while they were at the Uni-
versity of Minnesota.
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Figure 1: A Storage Area Network

systems view devices as local: devices are not shared so there is no need in the file system
to enforce device sharing semantics. Instead, the focus is on aggressively caching and ag-
gregating file system operations to improve performance by reducing the number of actual
disk accesses required for each file system operation [1], [2].

New networking technologies allow multiple machines to share the same storage de-
vices. File systems that allow these machines to simultaneously mount and access files on
these shared devices are called shared file systems [3], [4], [5], [6], [7]. Shared file systems
provide a server-less alternative to traditional distributed file systems where the server is
the focus of all data sharing. As shown in Figure 1, machines attach directly to devices
across a storage area network [8], [9], [10].

A shared file system approach based upon a shared network between storage devices
and machines offers several advantages:

1. Availability is increased because if a single client fails, another client may continue
to process its workload because it can access the failed client’s files on the shared
disk.

2. Load balancing a mixed workload among multiple clients sharing disks is simplified
by the client’s ability to quickly access any portion of the dataset on any of the disks.

3. Pooling storage devices into a unified disk volume equally accessible to all machines
in the system is possible, which simplifies storage management.

4. Scalability in capacity, connectivity, and bandwidth can be achieved without the lim-
itations inherent in network file systems like NFS designed with a centralized server.

We began development of our own shared file system, known as GFS-1 (the Global File
System, version 1), in the summer of 1995. At that time, we were primarily interested in
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exploiting Fibre Channel technology to post-process large scientific datasets [11] on Silicon
Graphics (SGI) hardware. Allowing machines to share devices over a fast Fibre Channel
network required that we write our own shared file system for IRIX (SGI’s System V UNIX
variant), and our initial efforts yielded a prototype described in [12]. This implementation
used parallel SCSI disks and SCSI reserve and release commands for synchronization.
Reserve and release locked the whole device, making it impossible to support simultaneous
file metadata accesses to a disk. Clearly, this was unacceptable.

This bottleneck was removed in our second prototype, known as GFS-2, by developing
a fine-grain lock command for SCSI. This prototype was described in our 1998 paper [6]
and the associated thesis [13]; we also described our performance results across four clients
using a Fibre Channel switch and RAID-3 disk arrays. Performance did not scale past three
clients due to lock contention and the lack of client caching. In addition, very large files
were required for good performance and scalability because neither metadata (or locks) nor
file data were cached on the clients.

By the spring of 1998, we began porting our code to the open source Linux operating
system. We did this for several reasons, but the primary one was that IRIX is closed source,
making it very difficult to cleanly integrate GFS into the kernel. Also, Linux had recently
acquired 64-bit, SMP, and floating-point support on Digital Equipment Corporation (DEC)
Alpha platforms that were adequate for our computing needs.

In addition, we shed our narrow focus on large data applications and broadened our
efforts to design a general-purpose file system that scaled from a single desktop machine to
large clusters of machines enabled for device sharing. Because kernel source was available,
we could finally support metadata and file data caching, but this required changes to the
lock specification, detailed in the 0.9.4 device lock specification [14], [15].

The GFS port to Linux involved a complete re-write of GFS-2, resulting in a new ver-
sion we call GFS-3 [7]. In addition to support for caching, GFS-3 supported leases on locks
which time out if a GFS machine fails to heartbeat the lock. Client IDs are returned with
the lock so that callbacks can be made to request that clients release metadata. GFS-3 used
extendible hashing for the directory data structure to allow large numbers of files in a single
directory. GFS-3’s scalability has been measured up to 8 machines and 8 disk units with
no measurable interference between machines making independent file accesses and disk
requests across the storage network. At this point, we believe that there are no significant
limits to GFS scalability.

However, though GFS-3 fixed most of the performance and scalability issues that had
arisen for the previous versions of GFS, it did not address a critical requirement for shared
disk cluster file systems: fault-tolerance. A production-quality shared file system must be
able to withstand machine, network, or shared disk failures without disrupting continued
cluster processing [3]. To this end, we have now implemented file system journaling in
the latest version of GFS, known as GFS-4. When a GFS machine fails and the failure
is detected, the remaining clients in the cluster may recover for the failed machine by
replaying its journal. With the addition of journaling, GFS is now ready for consideration
for deployment in production environments, after a reasonable beta test phase. We discuss
the use of Linux and GFS in processing large datasets later in this paper.

In the following sections we describe GFS-4 (which we will refer to simply as GFS
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in the remainder of this paper), the current implementation including the details of our
journaling code, new scalability results, changes to the lock specification, and our plans for
GFS-5, including file system resizing.

2 GFS Background

For a complete description of GFS-3 see [7], for GFS-2 see [6], and for GFS-1 see [12]. In
this section we provide a summary of the key features of the Global File System.

2.1 Dlocks

Device Locks are mechanisms used by GFS to synchronize client access to shared metadata.
They help maintain metadata coherence when metadata is cached by several clients. The
locks are implemented on the storage devices (disks) and accessed with the SCSI device
lock command we call Dlock [16], [17], [15]. The Dlock command is independent of all
other SCSI commands, so devices supporting the locks have no awareness of the nature of
the resource that is locked. The file system provides a mapping between files and Dlocks.

GFS-3 used Dlock version 0.9.4 [15], which included timeouts on a per lock basis,
multiple reader/single writer semantics, and inclusion of lock-holding client ID information
in the SCSI reply data. The latest, journaled version of GFS (version 4) uses Dlock version
0.9.5 [17], which includes some new features we describe in the following sections. Both
the 0.9.4 and 0.9.5 Dlock specifications have been implemented as daemon processes that
can executed on any machine on the network. A machine that runs a Dlock daemon process
is called a Dlock server. A Dlock server can provide provide Dlock functionality in systems
constructed with storage devices that do not have SCSI Dlock support [18].

2.1.1 Expiration

In a shared disk environment, a failed client cannot be allowed to indefinitely hold whatever
locks it held when it failed. Therefore, each holder must continually update a timer on the
disk. If this timer ever expires, other lock holders may begin error recovery functions to
eventually free the lock. Expiration is alternately referred to as timing-out, and the act of
updating the timer is often referred to as heartbeating the timer or the timer-device. In
version 0.9.4, time-outs were per lock; in 0.9.5, they are per-client.

2.1.2 Client IDs

The Client ID is a unique identifier for each client. The client id is completely opaque to the
Dlock device. In GFS the client ID is used both as an identifier and to store the IP address
of the client, allowing inter-machine communication. The Client ID can be any arbitrary
32-bit number that uniquely identifies a machine.
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2.1.3 Version Numbers

Associated with every lock is a version number. Whenever the data associated with a lock
is changed, the version number is incremented. Clients may use cached data instead of
re-reading from the disk as long as the version number on the dlock is unchanged since the
data was last read. The drawback with version numbers is that a client must still read the
version number (which is located on the dlock storage device or dlock server); this is often
a high-latency operation (even simple SCSI commands that do not touch the disk often
require at least 1 millisecond).

Version numbers are an optional dlock feature, and are are unused in GFS-4, which
relies instead on callbacks to keep cached metadata consistent. Version numbers may be
removed in a future version of the device lock specification.

2.1.4 Conversion Locks

The conversion lock is a simple one stage queue used to prevent writer starvation. In
Dlock version 0.9.4, one client may try to acquire an exclusive lock but fail because other
clients are constantly acquiring and dropping the shared lock. If there is never a gap where
no client is holding the shared lock, the writer requesting exclusive access never gets the
lock. To correct this, when a client unsuccessfully tries to acquire a lock, and no other
client already possesses that lock’s conversion, the conversion is granted to the unsuccessful
client. Once the conversion is acquired, no other clients can acquire the lock. All the
current holders eventually unlock, and the conversion holder acquires the lock. All of a
client’s conversions are lost if the client expires.

2.1.5 Enable

In the event that a lock device is turned off and comes back on, all the locks on the device
could be lost. Though it would be helpful if the locks were stored in some form of persistent
storage, it is unreasonable to require it. Therefore, lock devices should not accept dlock
commands when they are first powered up. The devices should return failure results, with
the enabled bit of the dlock reply data format cleared, to all dlock actions except refresh
timer until a dlock enable is issued to the drive.

In this way, clients of the lock device are made aware that the locks on the lock device
have been cleared, and can take action to deal with the situation. This is extremely impor-
tant, because if machines assume they still hold locks on failed devices or on dlock servers
that have failed, then two machines may assume they both have exclusive access to a given
lock. This inevitably leads to file system corruption.

2.2 Pool - A Linux Volume Driver

The Pool logical volume driver coalesces a heterogeneous collection of shared storage into
a single logical volume. It was developed with GFS to provide simple logical device capa-
bilities and to deliver Dlock commands to specific devices at the SCSI driver layer [19]. If
GFS is used as a local file system where no locking is needed, then Pool is not required.
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Pool also groups constituent devices into sub-pools. Sub-pools are an internal construc-
tion which does not affect the high level view of a pool2 as a single storage device. This
allows intelligent placement of data by the file system according to sub-pool characteris-
tics. If one sub-pool contains very low latency devices, the file system could potentially
place commonly referenced metadata there for better overall performance. There is not yet
a GFS interface designed to allow this. Sub-pools are currently used in a GFS file sys-
tem balancer [20]. The balancer moves files among sub-pools to spread data more evenly.
Sub-pools now have an additional “type” designation to support GFS journaling. The file
system requires that some sub-pools be reserved for journal space. Ordinary sub-pools will
be specified as data space.

There are two other volume managers available in Linux. Linux LVM (logical vol-
ume manager) was developed by Heinz Mauelshagen [21] and provides traditional volume
manager functionality including volume resizing, on-line addition and deletion of volumes
(both physical and logical levels), and on-line reallocation of physical disk space. Work
is in progress to develop a volume snapshotting capability in Linux LVM. There is also a
software RAID driver called MD developed by Ingo Mulnar that supports RAID levels 0,
1, 4, and 5 [22]. Pool does not support software RAID or volume resizing and virtualiza-
tion, while neither Linux LVM nor MD support multiple clients accessing the same volume.
Finding ways to integrate the functionality found in these different volume managers would
be very useful.

2.2.1 Modular Block Drivers

Device drivers are the collection of low-level functions in the OS used to access hardware
devices. Drivers can provide various levels of functionality. They range from directly
manipulating hardware registers to providing a more abstract view of devices, making them
easier to program [2]. The “I/O subsystem” refers to the mid-level drivers and OS routines
which come between hardware-specific drivers and upper level system calls.

Low-level, device-specific driver functions include:

� Device initialization and control
� Interrupt handling

� Transferring bytes of data into and out of buffers

Mid- and upper-level driver functions include:

� Device naming
� Buffering and caching
� Providing a consistent, programmable interface

In Linux, file systems and drivers may be written as kernel modules. This allows them
to be dynamically installed and removed from the kernel. Although not required, this makes
development much easier because the entire kernel need not be recompiled and restarted to
make a change in a module [23].

2The logical devices presented to the system by the Pool volume driver are affectionately called “pools”.
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Pool is a mid-level block driver built atop the SCSI and FC drivers. This means it
conforms to the standard block driver interfaces, but remains at a higher level of abstraction.
The following list describes the basic functionality provided by Pool:

� init module, cleanup module are the functions required by Linux to be a kernel mod-
ule. They basically call pool init when the driver is added and free memory when it
is removed.

� pool init is the function called when the Pool module is installed in the kernel. It
registers Pool in the global table of block drivers. It also initializes data structures
maintained by Pool describing currently managed pools. Registering a block driver
in the kernel includes specifying a major device number, a name (pool), and a set of
functions used to access devices of this type.

� pool open, pool release are called for a specific pool after the open and close system
calls on the pool’s device node. Usage counts are incremented or decremented. These
would be called due to a mount or I/O on the device node.

� pool read, pool write are called after a read or write system call on the pool’s device
node. They pass requests to the Linux routines block read() and block write().
These are not regularly used since the file system calls lower level routines directly.

� pool ioctl is used to request Dlocks, get listings of currently configured pools, add
new pools, remove pools, get basic size information or control debugging.

The following functions are internal pool routines called due to pool ioctl requests:

� add pool is called during passemble to configure a new pool. Information describing
the new pool is provided by passemble and used to allocate new structures in the Pool
driver. The parameters describe the pool, sub-pools, underlying physical devices,
Dlocks, and striping. Most of the code is OS-independent and is handled in gen pool.
All lower-level devices are opened at this stage to verify they can be used. The minor
number selected for the new pool is returned to user space.

� remove pool removes a specific pool by closing underlying devices and freeing data
structures. Pools are removed when the -r(emove) option is specified in passemble.

� list pool, list spool return descriptions of currently managed pools. This information
is needed by the tools passemble and pinfo. This is also how mkfs gfs (make a gfs
file system command) gets sub pool and Dlock information when creating a new file
system.

The last function, pool map, is the most interesting and central to Pool’s purpose. It
is used to map requests from a logical pool device and block number to a real device and
block number. The map functions for Pool and other volume managers are called in an
unusual way in Linux. This is the topic of the next section.
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if (MAJOR(bh->b_rdev) == POOL_MAJOR)
pool_map(&bh->b_rdev, &bh->b_rsector);

else if (MAJOR(bh->b_rdev) == MD_MAJOR)
md_map(&bh->b_rdev, &bh->b_rsector);

else if (MAJOR(bh->b_rdev) == LVM_MAJOR)
lvm_map(&bh->b_rdev, &bh->b_rsector);

Figure 2: Pseudocode of mapping functions called directly.

2.2.2 Block Mapping

All reads and writes to block devices occur in chunks defined by the file system block
size (usually 4 or 8 KB). Each of these block I/O requests is defined by a buffer head
structure (bh). All the bh’s are managed by the I/O subsystem and a bh for a specific
request is passed through OS layers from the file system 3 down to the low level disk driver.
Two bh fields are especially important in specifying the block:

� rdev: the device for this request (major, minor numbers)

� rsector: the block number on the device rdev

When using a volume driver, a bh comes from the file system with rdev equal to the
logical device and rsector equal to the logical block. When the bh reaches the specific
disk driver, rdev and rsector must specify a real device and block number. The I/O
subsystem routine which processes the bh below the file system is ll rw block(). Here
is where the specific volume manager mapping function is called to change rdev and
rsector.

To call the correct volume manager mapping function (pool map, md map, or lvm map),
the original major number of rdev is checked because each volume manager has a unique
major number. When the specific volume manager is identified, its map function can be
called directly. Pseudocode illustrating this is in Fig. 2.

The method of calling specific map functions can be improved by making the code
more general. Every block driver has an identification structure in the global block driver
table blk dev[] indexed by major number. The function pointer map fn is added to
blk dev struct as seen in Fig. 3. The function pointers are initially set to NULL for
every driver. If a block driver has a map function, like pool map, it will set map fn to
that function in the driver init routine.

The pseudocode segment in Fig. 2 can then be simplified as seen in Fig. 4. The map fn
field is compared to NULL. If the pointer is set, the driver for this block device has defined
a map function which is then called through the function pointer. The map function itself

3The Linux kernel is moving away from using the buffer cache at these levels as the page cache will be
used for most I/O. The buffer cache will be used at lower levels only.
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typedef void (request_fn_proc)(void);
typedef int (makerq_fn_proc)(struct buffer_head *, int rw);
typedef int (map_fn_proc)(kdev_t, kdev_t *, unsigned long *,

unsigned long);
typedef struct request ** (queue_proc)(kdev_t dev);

struct blk_dev_struct f
request_fn_proc *request_fn;
makerq_fn_proc *makerq_fn;
map_fn_proc *map_fn;
queue_proc *queue;
void *data;
struct request *current_request;
struct request plug;
struct tq_struct plug_tq;

g;

Figure 3: Entries in block device switch table.

dev = blk_dev + major;

if (dev->map_fn && dev->map_fn (bh[i]->b_rdev,
&bh[i]->b_rdev,
&bh[i]->b_rsector,
bh[i]->b_size >> 9)) f

printk (KERN_ERR ‘‘Bad map in ll_rw_block’’);
goto sorry;

g

Figure 4: Generic mapping in ll rw block()

determines the new rdev and rsector by using the number and size of each subpool
and sub-device. The two fields in the bh are then rewritten.

The same method used for the map function is also used for the make request func-
tion which is less common and used by volume drivers when doing mirroring. The map fn
and make request functions will probably be combined in the future. Using function
pointers for map and request routines was originally designed by Chris Sabol in the GFS
group who also worked on the initial Pool port and Pool under IRIX.

The Linux framework for block drivers described above is different from the standard
approach in other OS’s. In the more common method, each block driver defines a strategy
function as the single I/O entry point in the block device switch table. The file system and
any volume drivers always call the strategy function of a buffer’s device. Within a volume
driver’s strategy routine, mapping is done before calling the next driver’s strategy routine.
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The Linux I/O subsystem was designed assuming no volume driver layer which is why
mapping routines are called aside from the normal I/O path.

2.2.3 Dlock Support

A unique feature of the Pool driver required by the GFS locking layer is Dlock support.
When a pool is configured, particular sub-devices are specified as supporting Dlocks. The
Pool driver merges all the available Dlocks into a uniform Dlock space accessible by the
GFS locking layer through pool ioctl. When a Dlock is requested, Pool maps the logical
Dlock number to an actual Dlock on a specific device. Because the highest level SCSI
driver is not aware of the DLOCK command, Pool needs to construct the appropriate SCSI
command descriptor block (CDB) and insert it into the SCSI mid-layer driver.

Pool’s handling of Dlock commands is illustrated in Figure 5. There are three layers
between the file system and the lowest level hardware driver. First is the volume manager
which translates buffer addresses into real devices and block offsets. Not shown in the
diagram is other I/O subsystem code which merges and queues buffer requests. Second
is the upper level SCSI driver, SD, which breaks buffer requests into actual READ and
WRITE SCSI commands. Next is the mid level driver which manages all SCSI devices and
sends CDB’s to the correct host bus adapters. Because SD deals only with transferring data
with READ and WRITE it must be bypassed for other SCSI commands. Below this, the
mid level driver sends many other CDB’s and does not care about the specific command.
This is naturally the level where DLOCK commands can be queued.

Interfacing Pool’s Dlock code with the mid-layer SCSI driver4 required a patch to the
upper SD driver. SD maintains the array: Scsi Disk *rscsi disks. The array is
indexed by minor numbers so the detailed structure of a SCSI device is easily accessible
given the device number. Part of the Scsi Disk structure is a required parameter to the
scsi allocate device() routine. This allocate routine returns a Scsi Cmd pointer
which is passed into scsi do cmd(). The “do command” function sends the Dlock
CDB. So a kernel patch (distributed with GFS and Pool) exporting the rscsi disks

4The mid-layer SCSI driver code can be found in /usr/src/linux/drivers/scsi/scsi.c and the upper-level
SCSI driver is /usr/src/linux/drivers/scsi/sd.c
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symbol from the SD driver is required to access the appropriate Scsi Disk given the
minor number of the Dlock device.

Originally, the Pool driver handled all Dlock retries, timeouts, activity monitoring and
resets. All the code implementing this was rewritten when moving to Linux, making it
simpler and eliminating some incorrect behavior. Eventually as the Dlock specification
became more complex, all these functions were moved into a separate locking module. In
the current implementation, Pool only maps Dlock requests and sends them to devices.

2.3 File System Metadata

GFS distributes its metadata throughout the network storage pool rather than concentrating
it all into a single superblock. Multiple resource groups are used to partition metadata,
including data, dinode bitmaps and data blocks, into separate groups to increase client
parallelism and file system scalability, avoid bottlenecks, and reduce the average size of
typical metadata search operations. One or more resource groups may exist on a single
device or a single resource group may include multiple devices.

Resource groups are similar to the Block Groups found in Linux’s Ext2 file system.
Like resource groups, block groups exploit parallelism and scalability by allowing multiple
threads of a single computer to allocate and free data blocks; GFS resource groups allow
multiple clients to do the same.

GFS also has a single block, the superblock, which contains summary metadata not
distributed across resource groups, including miscellaneous accounting information such
as the block size, the journal segment size, the number of journals and resource groups,
the dinode numbers of the three hidden dinodes and the root dinode, some lock protocol
information, and versioning information.

Formerly, the superblock contained the number of clients mounted on the file system,
bitmaps to calculate the unique identifiers for each client, the device on which the file
system is mounted, and the file system block size. The superblock also once contained a
static index of the resource groups which describes the location of each resource group and
other configuration information. All this information has been moved to hidden dinodes
(files).

There are three hidden dinodes:
1) The resource index – The list of locations, sizes, and glocks associated with each

resource group
2) The journal index – The locations, sizes and glocks of the journals
3) The configuration space dinode – This holds configuration information that is used

by the locking modules and transparent to GFS. The Dlock/Dlip modules use it to store
namespace information about the cluster. (This is necessary for our ”Dlock” cluster infras-
tructure.)

There are four identifiers that each member of the cluster needs to know about all the
other members: Hostname, IP address, Journal ID Number, and Client ID number. The
quartets for each host in the cluster are stored in the config space dinode and passed to the
lock module as it is initialized. What format the data is in is up to the lock module. The
data will be written to the config file using a GFS ioctl call or standard write calls.
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This data is stored in files because it needs to be able to grow as the filesystem grows.
In previous versions of GFS, we just allocated a static amount of space at the beginning
of the filesystem for the Resource Index metadata, but this will cause problems when we
expand the filesystem later. If this information is placed in a file, it is much easier to grow
the file system at a later time, as the hidden metadata file can grow as well.

The Global File System uses Extendible Hashing [24], [7], [25] for its directory struc-
ture. Extendible Hashing (ExHash) provides a way of storing a directory’s data so that any
particular entry can be found very quickly. Large directories do not result in slow lookup
performance.

2.4 Stuffed Dinodes

A GFS dinode takes up an entire file system block because sharing a single block to hold
metadata used by multiple clients causes significant contention. To counter the resulting
internal fragmentation we have implemented dinode stuffing which allows both file system
information and real data to be included in the dinode file system block. If the file size is
larger than this data section the dinode stores an array of pointers to data blocks or indirect
data blocks. Otherwise the portion of a file system block remaining after dinode file system
information is stored is used to hold file system data. Clients access stuffed files with only
one block request, a feature particularly useful for directory lookups since each directory
in the pathname requires one directory file read.

GFS assigns dinode numbers based on the disk address of each dinode. Directories
contain file names and accompanying inode numbers. Once the GFS lookup operation
matches a file name, GFS locates the dinode using the associated inode number. By assign-
ing disk addresses to inode numbers GFS dynamically allocates dinodes from the pool of
free blocks.

2.5 Flat File Structure

GFS uses a flat pointer tree structure as shown in Figure 6. Each pointer in the dinode
points to the same height of metadata tree. (All the pointers are direct pointers, or they are
all indirect, or they are all double indirect, and so on.) The height of the tree grows as large
as necessary to hold the file.

The more conventional UFS file system’s dinode has a fixed number of direct pointers,
one indirect pointer, one double indirect pointer, and one triple indirect pointer. This means
that there is a limit on how big a UFS file can grow. However, the UFS dinode pointer
tree requires fewer indirections for small files. Other alternatives include extent-based
allocation such as SGI’s EFS file system or the B-tree approach of SGI’s XFS file system
[26]. The current structure of the GFS metadata is an implementation choice and these
alternatives are worth exploration in future versions of GFS.
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Figure 6: A GFS dinode. All pointers in the dinode have the same height in the metadata
tree.

3 Improvements in GFS Version 4

Since our presentation at the IEEE/NASA Mass Storage Symposium last year, there have
been many improvements to GFS. We describe some of these improvements in the follow-
ing sections.

3.1 Abstract Kernel Interfaces

We have abstracted the kernel interfaces above GFS, to the file-system-independent layer,
and below GFS, to the block device drivers, to enhance GFS’s portability.

3.2 Fibre Channel in Linux

Until the summer of 1999, Fibre Channel support in Linux was limited to a single ma-
chine connected to a few drives on a loop. However, significant progress has been made
in the quality of Fibre Channel fabric drivers and chipsets available on Linux. In partic-
ular, QLogic’s QLA2100 and QLA2200 chips are well-supported in Linux, with multiple
GPL’ed drivers written by QLogic and independent open source software developers. Dur-
ing testing in our laboratory with large Fabrics (32 ports) and large numbers of drives and
GFS clients, the Fibre Channel hardware and software has performed well. Recent reduc-
tions in adapter card and switch costs have made it possible to cost-effectively build large,
Fibre-Channel-based storage networks in Linux.
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Figure 7: Callbacks on glocks in GFS

However, it is possible to use GFS to share network disks exported through standard,
IP-based network interfaces like Ethernet using Linux’s Network Block Device software.
In addition, new, fast, low-latency interfaces like Myrinet combined with protocol layers
like VIA hold the promise of high performance, media-independent storage networks.

3.3 Booting Linux from GFS and Context-Sensitive Symbolic Links

It is possible to boot Linux from a GFS file system. In addition, GFS supports context-
sensitive symbolic links, so that Linux machines sharing a cluster disk can see the same file
system image for most directories, but where convenient (such as /etc/???) can symboli-
cally link to a machine-specific configuration file.

These two features provide building blocks for implementing a single system image by
providing for a shared disk from which the machines in a cluster can boot up Linux, yet
through context-sensitive symbolic links each machine can still maintain locally-defined
configuration files. This simplifies system administration, especially in large clusters,
where maintaining a consistent kernel image across hundreds of machines is a difficult
task.

3.4 Global Synchronization in GFS

The lock semantics used in previous versions of GFS were tied directly to the SCSI Dlock
command. This tight coupling was unnecessary, as the lock usage in GFS could be ab-
stracted so that GFS machines could exploit any global lock space available to all machines.
GFS-4 supports an abstract lock module that can exploit almost any globally accessible lock
space, not just Dlocks. This is important because it allows GFS cluster architects to buy
any disks they like, not just disks that contain Dlock firmware.
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The GFS lock abstraction allows GFS clients to implement callbacks, as shown in Fig-
ure 7. When client 2 needs a dlock exclusively that is already held by client 1, client 2 first
sends it’s normal dlock SCSI request to the disk drive (step 1 in the figure). This request
fails and returns the list of holder ClientIDs, which happens to be client 1 (step 2). Client
2 sends a callback to client 1, asking B to give up the lock (step 3). Client 1 syncs all
dirty (modified) data and metadata buffers associated with that dlock to disk (step 4), and
releases the dlock, incrementing the version number if any data has been written. Client A
may then acquire the dlock (step 5).

Because clients can communicate with each other, they may hold dlocks indefinitely
if no other clients choose to read from inodes associated with dlocks that are held. As
long as a client holds a dlock, it may cache any writes associated with the dlock. Caching
allows GFS to approach the performance of a local disk file system; our goal is to keep
GFS within 10-15% of the performance of the best local Linux file system systems across
all workloads, including small file workloads.

In GFS-4, write caching is write-back, not write-through. GFS uses Global Locks
(glocks), which may or may not be dlocks. GFS uses interchangeable locking modules,
some of which map glocks to Dlocks. Other locking methods, such as a distributed lock
manager [9] or a centralized lock server, can also be used. Our group has developed a
centralized lock server known as the GLM (Global Locking Module) [18]. GFS sees the
Glocks as being in one of three states:

1. Not Held – This machine doesn’t hold the Glock. It may or may not be held by
another machine.

2. Held – this machine holds the Glock, but there is no current process using the lock.
Data in the machine’s buffers can be newer than the data on disk. If another machine asks
for the lock, the current holder will sync all the dirty buffers to disk and release the lock.

3. Held + Locked – the machine holds the Glock and there is a process currently using
the lock. There can be newer data in the buffers than on disk. If another machine asks for
the lock, the request is ignored temporarily, and is acted upon later. The lock is not released
until the process drops the Glock down to the Held state.

When a GFS file system writes data, the file system moves the Glock into the Held+Locked
state, acquiring the Dlock exclusively, if it was not already held. If another process is writ-
ing to that lock, and the Glock is already Held+Locked, the second process must wait until
the Glock is dropped back down to Held.

The Write is then done asynchronously. The I/O isn’t necessarily written to disk, but
the cache buffer is marked dirty. The Glock is moved back to the Held state. This is the
end of the write sequence.

The Buffers remain dirty until either bdflush or a sync causes the buffers to be synced
to disk, or until another machine asks for the lock, at which point the data is synced to disk
and the Glock is dropped to Not Held and the Dlock is released. This is important because
it allows a GFS client to hold a Glock until another machine asks for it, and service multiple
requests for the same Glock without making a separate dlock request for each process.
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3.5 GFS and Fibre Channel Documentation in Linux

We have developed documentation for GFS over the last year. Linux HOWTOs on GFS
and Fibre Channel can be found at the GFS web page: http://www.globalfilesystem.org.
In addition, there are conventional man pages for all the GFS and Pool Volume Manager
utility routines, including mkfs, ptool, passemble, and pinfo[18].

4 File System Journaling and Recovery in GFS

To improve performance, most local file systems cache file system data and metadata so that
it is unnecessary to constantly touch the disk as file system operations are performed. This
optimization is critical to achieving good performance as the latency of disk accesses is 5
to 6 orders of magnitude greater than memory latencies. However, by not synchronously
updating the metadata each time a file system operation modifies that metadata, there is a
risk that the file system may be inconsistent if the machine crashes.

For example, when removing a file from a directory, the file name is first removed from
the directory, then the file dinode and related indirect and data blocks are removed. If the
machine crashes just after the file name is removed from the directory, then the file dinode
and other file system blocks associated with that file can no longer be used by other files.
These disk blocks are now erroneously now marked as in use. This is what is meant by an
inconsistency in the file system.

When a single machine crashes, a traditional means of recovery has been to run a file
system check routine (fsck) that checks for and repairs these kinds of inconsistencies. The
problem with file system check routines is that (a) they are slow because they take time
proportional to the size of the file system, (b) the file system must be off-line while the fsck
is being performed and, therefore, this technique is unacceptable for shared file systems.
Instead, GFS uses a technique known as file system journaling to avoid fsck’s altogether
and reduce recovery time and increase availability.

4.1 The Transaction Manager

Journaling uses transactions for operations that change the file system state. These oper-
ations must be atomic, so that the file system moves from one consistent on-disk state to
another consistent on-disk state. These transactions generally correspond to VFS opera-
tions such as create, mkdir, write, unlink, etc. With transactions, the file system metadata
can always be quickly returned to a consistent state.

A GFS journaling transaction is composed of the metadata blocks changed during an
atomic operation. Each journal entry has one or more locks associated with it, correspond-
ing to the metadata protected by the particular lock. For example, a creat() transaction
would contain locks for the directory, the new dinode, and the allocation bitmaps. Some
parts of a transaction may not directly correspond to on-disk metadata.

Two types of metadata buffers are involved in transactions: primary and secondary.
Primary metadata includes dinodes and resource group headers. They contain a generation
number that is incremented each time they are changed, and that is used in recovery. There
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must always be one piece of primary metadata for each lock in the transaction. Secondary
metadata includes indirect blocks, directory data, and directory leaf blocks; these blocks
do not have a generation number.

A transaction is created in the following sequence of steps:
(1) start transaction
(2) acquire the necessary Glocks
(3) check conditions required for the transaction
(4) pin the in-core metadata buffers associated with the transaction (i.e., don’t allow

them to be written to disk)
(5) modify the metadata
(6) pass the Glocks to the transaction
(7) commit the transaction by passing it to the Log Manager
To represent the transaction to be committed to the log, the Log Manager is passed a

structure which contains a list of metadata buffers. Each buffer knows its Glock number,
and its type (Dinode, RG Header, or Secondary Metadata). Passing this structure represents
a commit to the in-core log.

4.2 The Log Manager

The Log Manager is separate from the transaction module. It takes metadata to be written
from the transaction module and writes it to disk. The Transaction Manager pins, while the
Log Manager unpins. The Log Manager also manages the Active Items List, and detects
and deals with Log wrap-around.

For a shared file system, having multiple clients share a single journal would be too
complex and inefficient. Instead, as in Frangipani [4], each GFS client gets its own journal
space, that is protected by one lock that is acquired at mount time and released at unmount
(or crash) time. Each journal can be on its own disk for greater parallelism. Each journal
must be visible to all clients for recovery.

In-core log entries are committed asynchronously to the on-disk log. The Log Manager
follows these steps:

(1) get the transaction from the Transaction Manager
(2) wait and collect more transactions (asynchronous logging)
(3) perform the on-disk commit
(4) put all metadata in the Active Items List
(5) unpin the secondary metadata
(6) later, when the secondary metadata is on disk, remove it from the Active Items List
(7) unpin the primary metadata
(8) later, when the primary metadata is on disk, remove it from the Active Items List
Recall that all journal entries are linked to one or more Glocks, and that Glocks may be

requested by other machines during a callback operation. Hence, callbacks may result in
particular journal entries being pushed out of the in-core log and written to the on-disk log.
Before a Glock is released to another machine, the following steps must be taken:

(1) journal entries dependent on that Glock must be flushed to the log
(2) the in-place metadata buffers must be synced
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Figure 8: Journal Write Ordering Imposed by Lock Dependencies During GFS Lock Call-
backs

(3) the in-place data buffers must be synced
Only journal entries directly or indirectly dependent on the the requested Glock need

to be flushed. A journal entry is dependent on a Glock if either (a) it references that Glock
directly, or (b) it has Glocks in common with earlier journal entries which reference that
Glock directly.

For example, in Figure 8, four journal entries in sequential order (starting with 1) are
shown, along with the Glocks upon which each transaction is dependent. If Glock 6 is
requested by another machine, journal entries 1, 2, and 4 must be flushed to the on-disk
log in order. Then the in-place metadata and data buffers must be synced for Glock 6, and
finally Glock 6 is released.

4.3 Recovery

Journal recovery is initiated by clients in several cases:
(a) a mount time check shows that any of the clients were shutdown uncleanly or oth-

erwise failed
(b) a locking module reports an expired client when it polls for expired machines
(c) a client tries to acquire a Glock and the locking module reports that the last client to

hold that Glock has expired
In each case, a recovery kernel thread is called with the expired client’s ID. The machine

then attempts to begin recovery by acquiring the journal lock of a failed client. A very
dangerous special case can result when a client (known as a zombie) fails to heartbeat
its locks, so the other machines think it is dead, but it is still alive; this could happen,
for example, if for some reason the ”failed” client temporarily was disconnected from the
network. This is dangerous because the supposedly failed client’s journal will be recovered
by another client, which has a different view of the file system state. This ”split-brain”
problem will result in file system corruption. For this reason, the first step in recovery after
acquiring the journal lock of a failed client is to either (1) forcibly disable the failed client
or, (2) fence out all IO from the client using the zoning feature of a Fibre Channel switch.

Once a client obtains the journal lock for a failed client, journal recovery proceeds as
follows: the tail (start) and head (end) entries of the journal are found. Partially-committed
entries are ignored. For each journal entry, the recovery client tries to acquire all locks
associated with that entry, and then determines whether to replay it, and does so if needed.
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All expired locks are marked as not expired for the failed client. At this point, the journal
is marked as recovered.

The decision to replay an entry is based on the generation number in the primary meta-
data found in the entry. When these pieces of metadata are written to the log, their genera-
tion number is incremented. The journal entry is replayed if the generation numbers in the
journal entry are larger than the in-place metadata.

Note that machines in the GFS cluster can continue to work during recovery unless they
need a lock held by a failed client.

4.4 Comparison to Alternative Journaling Implementations

The main difference between journaling a local file system and GFS is that GFS must be
able to flush out transactions in an order other than that in which they were created. A
GFS client must be able to respond to callbacks on locks from other clients in the cluster.
The client should then flush only the transactions that are dependent on that lock. This
means that GFS can’t combine transactions into compound transactions until just before
the transaction is committed to the disk.

When a GFS client unlinks a file from the directory structure, the file isn’t actually
deallocated until all clients have stopped using it. In order to determine which clients
are using a given dinode, GFS must maintain an “nopen” count in each dinode. This is
a counter of the clients that are using a dinode. When a client crashes, it leaves nopen
references on all the dinodes that it was using. As part of recovery, the machine doing the
recovery must determine which dinodes the failed client was using and decrement nopen
count on those dinodes.

Hence, each GFS client maintains a list of all the dinodes it has nopen references on.
Every time an inode is opened or closed, a marker is put in the journal describing the
operation. Since the log can wrap many times during the time that a dinode is held by the
client, this list is periodically re-logged in its journal.

GFS also has to label some metadata blocks with generation numbers that are incre-
mented when transactions are committed. These generation numbers and the current state
of the global locks are used to decide whether or not a given journal entry should be re-
played during recovery.

As mentioned previously with respect to generation numbers, GFS has two types of
metadata: Primary and Secondary. Primary metadata has version numbers and must be
persistent on the disk – once the block is allocated as primary metadata, it can never be
reused for real data or secondary metadata. Secondary metadata isn’t subject to either of
these two restraints.

One difference between Frangipani [4] and GFS is that Frangipani doesn’t make a dis-
tinction between primary and secondary metadata. All Frangipani metadata is primary
metadata. This is a good choice for Frangipani because of the unique nature of the Petal
[27] block device underneath it. GFS is greatly simplified, however, by not having to main-
tain lists of unused indirect blocks, directory blocks, and other secondary metadata. The
trade-off is that GFS has the extra constraint that secondary metadata must be flushed to
the disk before any primary metadata for each compound transaction.
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5 Performance Results

Figures 9 and 11 represent the current single client I/O bandwidth of Linux GFS (GFS-3
release Antimatter-Anteater was used for the tests. This release does not include journal-
ing.) The tests were performed on a 533 MHz Alpha with 512 MB of RAM running Linux
2.2.13. The machine was connected to eight Seagate ST19171FC Fibre Channel drives on
a loop with a Qlogic host adapter card. A 4,096-byte block size was used for these tests. (A
block size of 8,192 bytes yields numbers that about 10 percent better, but this larger block
size isn’t available on all Linux architectures.) The Transfer Size axis represents the size
of the file being transferred, whereas the Request Size represents the actual size of each
file transfer request. So, for example, a 4096 MB file transferred using 4 requests yields a
request size of 1024 MB and a transfer size of 4096 MB.

The bandwidth of first time creates, shown in Figure 9, peaks at around 55 MB/s. The
read bandwidth shown in Figure 11 peaks at about 45 MB/s.

The GFS-3 single client performance can be compared to our previous GFS-2 single
client performance numbers reported in [7] and shown in Figures 10 and 12. The machine
configurations for these tests were essentially the same, although we used Linux kernel
2.2.0-pre7 for the GFS-2 tests. GFS-2 read bandwidth peaked out at 42 MB/s while GFS-3
reads peaked out at 48 MB/s. (notice the scale differences in the figures between GFS-2
and GFS-3 results).

Though the peak bandwidths are relatively close, notice how GFS-3 read performance
is much better for smaller request sizes. For GFS-3 creates, the maximum performance
is 50 MB/s versus 18 MB/s for GFS-2. As in the read case, GFS-3 create performance is
much higher at smaller request sizes than GFS-2 create performance.

The significant GFS-3 performance advantage comes from the fact that GFS-2 had only
read buffer caching, whereas GFS-3 has both read buffer and lock caching. GFS-2 would
need to check the lock (a separate SCSI request) each time a buffer was read or written,
whereas GFS-3 uses callbacks to enable lock caching. As long as no other client needs the
lock, no lock request is made to disk during buffer accesses. The performance improvement
is even more pronounced for writes, since writes can nearly always be cached. The actual
write to disk only occurs later during a periodic sync operation, or when the buffer cache
is pressured by the kernel to release buffer space to applications.

Figure 13 is a comparison of the extendible hashing directory structure in GFS-3 to
the linear directory structure of Ext2. The test involved creating a million entry directory.
Creates per second were measured at regular intervals as the directory was filled. The
GFS curve levels off because of un-cached hash tables. Even for large directory sizes (10s
of thousands directory entries), GFS can create 100s of files per second. Fast directory
operations for directories with thousands of files are necessary to support applications with
millions of small files.

Figure 14 shows one to four GFS-3 hosts being added to a constant size file system and
each performing a workload of a million random operations. These four machines were
connected across a Brocade Fabric switch to 4 4-disk enclosures, each configured as a sin-
gle 4-disk loop. The workload consisted of 50 percent reads, 25 percent appends/creates
and 25 percent unlinks. Each machine was working in in its own directory and the direc-
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Figure 13: File creates per second versus directory size

tories were optimally placed across the file system. Notice that the scalability curve shows
nearly perfect speedup. Similar results were achieved for an 8-way cluster. These new
results compare favorably with the dismal scaling results obtained for the early versions of
GFS [6], which didn’t cache locks, file data, or file system metadata.

6 Prospects for Linux in Big Data Environments

The ability of Linux to handle supercomputing workloads is improving rapidly. In the past
year, Linux has gained 2 journaled file systems (ext3fs and Reiserfs) with two more on
the horizon (XFS and GFS). SGI is porting its XFS file system to Linux. SGI has also
open-sourced its OpenVault media management technology. Improvements in NFS client
performance, virtual memory, SMP support, asynchronous and direct IO, and other areas
will allow Linux to compete and surpass other UNIX implementations.

The open source nature of Linux provides better peer review on both architecture and
code. Linux is free, and appears to be well on its way towards becoming the standard server
operating system of the future. This means that most server applications will be ported to
it in time, and that competition for Linux support and specialized services will develop.
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7 Conclusions and Future Work

In this paper, we described the GFS journaling and recovery implementation and other
improvements in GFS version 4 (GFS-4). These include a lock abstraction and network
block driver layer, which allow GFS to work with almost any global lock space or storage
networking media. The new lock specification (0.9.5) provides for better fairness and other
improvements to support journaling and recovery. In addition, a variety of other changes
to the file system metadata and pool volume manager have increased both performance and
flexibility. Taken together, these changes mean that GFS can now enter a beta test phase
as a prelude to production use. Early adopters who are interested in clustered file systems
for Linux are encouraged to install and test GFS to help us validate its performance and
robustness.

Once the work on journaling and recovery is complete, we intend to consider several
new features for GFS. These may include file system versioning for on-line snapshots of file
system state using copy-on-write semantics. File system snapshots allow an older version
of the file system to be backed up on-line while the cluster continues to operate. This is
important in high-availability systems. Heinz Mauelshagen is implementing snapshotting
in the Linux LVM volume manager [21], and so it may not be necessary to support this
feature in GFS if we can use LVM to create GFS pools.

The ability to re-size the file system on-line is also very important, especially in storage
area networks, where it will be quite common for new disks to be continually added to the
SAN.

Finally, Larry McVoy, Peter Braam, and Stephen Tweedie are developing a scalable
cluster infrastructure for Linux. This will include a Distributed Lock Manager (DLM)
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and mechanisms to detect and recover from client failures and cluster partitioning. This
infrastructure could be very helpful in implementing recovery in GFS.
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