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In computer systems today, speed and responsiveness is

often determined by network and storage subsystem per- .

formance. Faster, more scalable networking interfacés Introduction

like Fibre Channel and Gigabit Ethernet provide the scaf- . )

folding from which higher performance implementation§aditional local file systems support a persistent name

may be constructed, but new thinking is required abctR@c€ by creating a mapping between blocks found on

how machines interact with network-enabled storage §lisk drives and a set of files, file names, and directories.
vices. These file systems view devices as local: devices are not

Qared, hence there is no need in the file system to enforce

We have developed a Linux file system called GFS (tla . hari tics. Instead. the f .
Global File System) that allows multiple Linux machine €viCce sharing semantics. instead, the Tocus IS on aggres-

to access and share disk and tape devices on a Fibre Cﬁyﬁ—ly caching and aggregatlng'flle system operations to
nel or SCSI storage network. We plan to extend GFS prove performange by reducmg the number of gctual
transporting packetized SCSI commands over IP so t k accesses required for each file system operation [1],
any GFS-enabled Linux machine can access shared Het- . . . .

work devices. GFS will perform well as a local file sys- New networking technolog|e§ allow multiple machines
tem, as a traditional network file system running over IE{ share the.same stprage devices. File systems that aI_Iow
and as a high-performance cluster file system running olfise machines to simultaneously mount and access files

storage networks like Fibre Channel. GFS device sh f_tg(;se S dh?Ired devices are_(cj:aﬂ;edred f'lle systlenfs],.
ing provides a key cluster-enabling technology for Linui- Shared file systems provide a server-less alternative to

helping to bring the availability, scalability, and load balt_r’aditional distributed file systems where the server is the
ancing benefits of clustering to Linux focus of all data sharing. As shown in Figure 1, machines
Our goal is to develop a scaIaE)Ie (in number tach directly to devices acrossirage area network

, : , o 1, [6], [7], [8]-

clients and devices, capacity, connectivity, and ba "
. i ) A shared file system approach based upon a network

width) server-less file system that integrates IP-based r]:?et'ween storage devices and machines offers several ad-

work attached storage (NAS) and Fibre-ChanneI—basVeaO:] tages: 9

storage area networks (SAN). We call this new architec- ges.

ture Storage Area InterNetworking (SAINT). It exploits 1. Availability is increased because if a single client
the speed and device scalability of SAN clusters, and pro- fails, another client may continue to process its work-
vides the client scalability and network interoperability of load because it can access the failed client’s files on
NAS appliances. the shared disk.

Our Linux port shows that the GFS architecture is
portable across different platforms, and we are currentl2. Load balancinga mixed workload among multiple
working on a port to NetBSD. The GFS code is open clients sharing disks is simplified by the client’s abil-
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Figure 1: A Storage Area Network

ity to quickly access any portion of the dataset on amaper [4] and the associated thesis [11]; we also described

of the disks. our performance results across four clients using a Fibre
Channel switch and RAID-3 disk arrays. Performance did

. Pooling storage devices into a unified disk volumgot scale past three clients due to heavy lock contention.
equally accessible to all machines in the systemigaddition, very large files were required for good perfor-

possible. mance and scalability because neither metadata nor file

S . - ., data were cached on the clients.
4. Scalabilityin capacity, connectivity, and bandwidth

can be achieved without the limitations inherent in BY the spring of 1998, we began porting our code to the
network file systems like NFS designed with a ce/PP€n source Linux operating system. We did this for sev-
tralized server. eral reasons, but the primary one was that IRIX is closed
source, making it very difficult to cleanly integrate GFS
We began development of our own shared file systetdto the kemel. Also, Linux had recently acquired 64-bit
known as GFS-1 (the Global File System, version 1), #1d SMP support and on Digital Equipment Corporation
the summer of 1995. At that time, we were primarily in®EC) Alpha platforms was much faster and cheaper than
terested in exploiting Fibre Channel technology to po&Ur IRIX desktop machines.

process large scientific datasets [9] on Silicon Graphicdn addition, we had shed our narrow focus on large data
(SGI) hardware. Allowing machines to share devices ovapplications and had broadened our efforts to design a
a fast Fibre Channel network required that we write ogeneral-purpose file system that scaled from a single desk-
own shared file system for IRIX (SGI's System V UNIXop machine to a large, heterogeneous network enabled for
variant), and our initial efforts yielded a prototype dedevice sharing. Because we had kernel source we could
scribed in [10]. This implementation used parallel SC$hally support metadata and file data caching, but this re-
disks and SCSI RESERVE and RELEASE commands fjuired changes to the lock specification, detailed in [12].
synchronization. RESERVE and RELEASE locked thEhis GFS port to Linux involved significant changes to
whole device, making it impossible to support simultasFS-2, so that we now refer to it as GFS-3. In the fol-
neous file metadata accesses to a disk. Clearly, this Waging sections we describe GFS-3 (which we will refer
unacceptable. to as GFS in the remainder of this paper), the current im-

This bottleneck was removed in our second prototygdementation including the details of our Linux port, new
known as GFS-2, by developing a fine-grain lock consealable directory and file metadata data structures, pre-
mand for SCSI. This prototype was described in our 1988inary performance results, and future work.
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2 GFS Background 2.3 Resource Groups

For a complete description of GFS-2 see [4] and for GESFS distributes its metadata throughout the network stor-

1 see [10]. In this section we provide a summary of ttR9€ pool rather than concentrating it all into a single su-
key features of the file system. perblock. Multiple resource groups are used to partition

metadata, including data and dinode bitmaps and data
blocks, into separate groups to increase client parallelism
2.1 Dlocks and file system scalability, avoid bottlenecks, and reduce
the average size of typical metadata search operations.
Device Locksare mechanisms used by GFS to facilitat®ne or more resource groups may exist on a single device
mutual exclusion of file system metadata. They are alspa single resource group may include multiple devices.
used to help maintain the coherence of the metadata wheResource groups are similar to the Block Groups found
it is cached by several clients. The locks are implemenminux’s Ext2 file system. Like resource groups, block
on the storage devices (disks) and accessed with the Sg@lips exploit parallelism and scalability by allowing
device lock commandlock The Dlock command is in- multiple threads of a single computer to allocate and free
dependent of all other SCSI commands, so devices sHata blocks; GFS resource groups allow multiple clients
porting the locks have no awareness of the nature of #gedo the same.
resource that is locked. The file system provides a mapGFs also has a single block, the superblock, which con-
ping between files and Dlocks. tains summary metadata not distributed across resource
In the original specification [4], each Dlock is basica”groups_ (The superblock may be replicated to improve
a test-and-set lock. A GFS client acquires a lock, reagsrformance and ease recovery.) This information in-
data, modifies the data, writes the data back, and releagg@ges the number of clients mounted on the file system,
the lock. This allows the file system to complete opefitmaps to calculate the unique identifiers for each client,
ations on the metadata that are “atomic” with respectdge device on which the file system is mounted, and the
other operations on the same metadata. file system block size. The superblock also contains a
Each Dlock also has a “version number” associatgthtic index of the resource groups which describes the
with it. When a client wants to do a read-modify-writéocation of each resource group and other configuration
operation on a piece of metadata, it acquires the lock, dagfermation.
the read-modify-write, and releases the lock usingutie
lock incrementaction. When a client just wants to read )
metadata, it acquires the lock, reads the metadata, andx¢t  Stuffed Dinodes
iﬁisgsgzrifcckoﬁig?;:?IOCkaCt'on' Ifall clients f°”°‘{V AhGFS dinode takes up an entire file system block be-
, y can be checked by comparingthe X )
version number returned by a lock action with the valgg 1€ Sh"’?””g a single plo_ck to hold mgtadata used by
. . multiple clients causes significant contention. To counter
of the version number when the lock was previously helt%. resulting internal fragmentati h impl ted
If the version numbers are the same, no client modifi F 9 2l ragmentationwe have Impiemente
the data protected by the lock and it is guaranteed to(aolgOOIe stuffing which allows both file system informa-
valid. Version numbers were also used for caching in t
distributed lock manager of the Vaxcluster [6].

ﬁgn and real data to be included in the dinode file sys-
em block. If the file size is larger than this data section
the dinode stores an array of pointers to data blocks or
indirect data blocks. Otherwise the portion of a file sys-
2.2 The Network Storage Pool tem block remaining after dinode file system information
is stored is used to hold file system data. Clients access
The network storage pool (NSP) volume driver suppostuffed files with only one block request, a feature partic-
the abstraction of a single unified storage address spalggly useful for directory lookups since each directory in
for GFS clients. The NSP is implemented in a devidbe pathname requires one directory file read.
driver layer on top of the basic SCSI device and Fibre Consider a file system block size of 4 KB and assume
Channel drivers. This driver translates from the logicttie dinode header information requires 128 bytes. With-
address space of the file system to the address spaceubfstuffing, a 1-byte file requires a total of 8 KB and at
each device. Subpools divide NSPs into groups of simileast 2 disk transfers to read the dinode and data block.
device types which inherit the physical attributes of thé&ith stuffing, a 1-byte file only requires 4 KB and one
underlying devices and network connections. read request. The file can grow to 4 KB minus 128 bytes,
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or 3,968 bytes, before GFS unstuffs the dinode. written by third parties [13], [14]. We expect that what-
GFS assigns dinode numbers based on the disk addesss shortcomings Linux currently has with respect to ma-

of each dinode. Directories contain file names and acconipulating large data sets will be overcome with time.

panying inode numbers. Once the GFS lookup operatiGfrS developmentis now focused primarily on Linux.

matches a file name, GFS locates the dinode using the as-

sociated inode number. By assigning disk addresses,t .

inode numbers GFS dynamically allocates dinodes frz‘gma' IRIX'vs Linux

the pool of free blocks. There are big differences between the IRIX and Linux Vir-
tual File System (VFS) layers. IRIX uses the standard
25 Flat File Structure SVR4 VFS/Vnode interface, while Linux uses a home-

grown approach.
GFS uses a flat pointer tree structure as shown in Figure
2. Each pointer in the dlngde points t_o the same height©f 1 vEs caching
metadata tree. (All the pointers are direct pointers, or they
are all indirect, or they are all double indirect, and so orBpth VFS layers provide (roughly) the same set of system
The height of the tree grows as large as necessary to hwitls and make similar requests to the file system specific
the file. code. Their approach is different, though. The SVR4 VFS
The more conventional UFS file system’s dinode hadayer was planned to support networked file systems from
fixed number of direct pointers, one indirect pointer, orige start [15]. In contrast, the Linux file system is more
double indirect pointer, and one triple indirect pointepriented towards optimizing local file systems.
This means that there is a limit on how big a UFS file The boundary between the IRIX/SVR4 VFS layer and
can grow. However, the UFS dinode pointer tree requirte file system specific code is very clean. Every time the
fewer indirections for small files. Other alternatives irWFS layer needs information from the file system specific
clude extent-based allocation such as SGI's EFS file siayer, it makes a function call to the file system dependent
tem or the B-tree approach of SGI's XFS file system. Tliyer for that information. It remembers almost nothing
current structure of the GFS metadata is an implemenaout previous requests.
tion choice and these alternatives are worth exploration inThis is very good for a networked file system. One ma-
future research. chine can change data in the file system without worrying
about other machine’s VFS layers caching that data. The
VFS layer always asks the file system specific layer when
3 GFSon Linux it wants information. The file system specific layer can
always provide the most up to date metadata.
Work on the Global File System started on SGI's IRIX The Linux VFS layer, on the other hand, knows a lot
operating system. IRIX is optimized for a big data erabout the files it is accessing. It has its own copies of the
vironment and provides a lot of tools needed to develfie size, permissions, link count, etc. For local file sys-
GFS. The two things that IRIX lacks are kernel interfacems, this works great. All disks accesses go though the
documentation and easily available kernel source. VFES layer anyway, so the VFS layer might as well cache
In order for the file system module to interact with othehe data as it goes by. Local file systems can be very quick
parts of kernel, the writer of the file system needs to ubecause the VFS avoids the overhead of calling the neces-
derstand the interfaces to those other parts of the kersaly function and waiting for the file system specific layer
This understanding is easily achieved in one of two ways: locate and encode the requested information. It just
reading the documentation of the interfaces or, if no daeads the data from its own copy. Local file systems can
umentation exists, reading the source that implements tigo be simpler than their SVR4 counterparts. The Linux
interface. (Some have argued that source code is the oS layer does permission checking automatically. The
true documentation.) Neither of these options are availriter of the local file system doesn't need to be as con-
able for IRIX. cerned with the intricate details of how UNIX manages
A open source operating system, like Linux, is ideal f@rermissions.
developing new kernel code. The source code is freelyHowever, this makes designing and implementing a
available. All kernel interfaces can be understood wittetwork file system more difficult in Linux. Uncontrolled
a little bit of examination and cogitation. Because theaching in a networked file system, especially a shared-
source code is freely available, documentation can tsk file system, can result in data inconsistencies between
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Figure 2: A GFS dinode. All pointers in the dinode have the same height in the metadata tree.

machines. The Linux VFS layer does provide some caisephen Tweedie has written a patch for Linux that im-
to the file system specific code to prevent the use of stplements Direct I/O [16], but it won't go into the official
data, but it is awkward and not nearly as efficient as tkernel until version 2.3.
SVR4 VFS. There are many places where the Linux VFS
checks on file metadata (permissions, etc.) before it caﬁusz
the file system specific code. In most cases, that data has
to be rechecked in the file system specific code to avd@drrently, one Fibre Channel (FC) [17] driver is avail-
race conditions. SVR4 VFS doesn’'t make the check @ble for Linux. It was written at the University of New
the first place, so it is only done once (in the file systekiamphshire (UNH) InterOperability Lab for the Qlogic
specific layer). ISP2100 [18]. The driver is integrated into the Linux
Linux is open source software and the developmegtiver hierarchy so all attached FC devices appear in
group is open to new ideas. One of the goals of thee file system as standard SCSI (sd) devices. The pre-
GFS group is to affect change in the Linux VFS layer théstalled firmware on the QLA2100 adapter currently sup-
makes it more efficient for all file systems in general arts only FC loops. Updated firmware with fabric sup-
GFS in particular. port may be obtained. To date, we have not yet tested with
the fabric-supporting firmware. New work on the driver
will also be required to support fabrics. (A good descrip-
3.1.2 Directl/O tion of Fibre Channel technology, including both loops

d fabrics, be found in the book by B 17].
IRIX has something called Direct I/O. It allows a filean abrics, can be found in the book by Benner [17])

system to copy data directly to and from the disk and a

user buffer. This eliminates a memory copy, as norm4l  Fjle System |mprovement3

buffered I/O reads data off the disk into the buffer cache

and then copies it into the user buffer. Direct I/O can offénany improvements have been made to the file system

significant speed improvements in large file access.  and metadata structures described in [4] and [10]. These
At this time, Linux doesn’'t have an equivalent to Diechanges will, we believe, dramatically increase GFS's

rect I/O. All disk I/0 must pass through the buffer cachecalability.

Linux Fibre Channel support
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4.1 Directories and Extendible Hashing Leaf blocks always have a power-of-two number of

. i . _hash table pointers pointing to them. When a directory
One of the places where traditional file systems don’t @ity is added to a full leaf block, the leaf block is split

formwell is large directories. Most early file systems (ango two separate leaf blocks. Half of the hash table point-
a surprising number of modern ones) store directoriesg§ point to the original leaf block and half point to the
an unsorted linear list of directory entries. This is salifgy eaf block. Directory entries are distributed between
factory for small directories, but it becomes too slow fqfe two leaf blocks so that they are pointed to by the cor-
big ones. On average, the file system must search thropglht element of the hash table. When a leaf block needs to
half of the directory to find any one entry. Not only is thig o split but it is only pointed to by one hash table pointer,
costly in CPU time, butit causes excessive I/O to the digke size of the hash table is doubled. There are then two
Large directories can take up megabytes of disk spacepginters to the leaf block and the leaf can be split nor-
The Global File System uses Extendible Hashing [1$hally.
[20] for its directory structure. Extendible Hashing (Ex- ap example ExHash directory can be see in Figures 3—
Hash) provides a way of storing a directory’s data so thltjt shows a small hash table with a size of four. The first
any particular entry can be found very quickly. Larggyo bits of each file's hash are used in the table lookup. In
amounts of searching aren't required. this example, each leaf block holds three directory entries.
For example, assuming a 4096-byte block size and 280The GFS hash tables are stored as regular file data
byte directory entries, a GFS ExHash directory can hqjdthe directory and accessed using the standard vnode
up to about 1700 files and find any file in one block reaghadwrite routines. This allows the hash table to grow
A ExHash directory that contains up to about 910,000 filgs arbitrary sizes and still preserve optimal access time to
can find any file in two block reads. This compares iy particular pointer. The leaf blocks are stored outside
searching through (on average) half of the 62,000 blocthe regular file metadata in blocks that are allocated by
necessary to hold the directory if an unsorted linear ligfe directory routines.

is used. Section 4.1.3 goes over how these numbers WgEs has two modes of directory operation. When the

arrived determined. number of directory entries is small enough to fit in the
part of the dinode normally reserved for metadata point-
411 How does ExHash work? ers, they are stuffed in that area, just as small regular files

are stuffed in the dinode. The dinode is already in mem-

The basis of ExHash is a multi-bit hash of each filenan@y if the directory is open, so zero reads are required to
A subset of the bits in the hash is used as an index intdirzd any entry.
hash table. The pointers of the hash table point to “leaf
bloc_ks" that conFain the directory entries _themselves.. £ o Growing the Hash Table
particular entry in an ExHash directory is found using
the following steps: Compute the 32-bit hash of filenam/hen the directory can no longer be stuffed it is converted
take the left X bits from the hash, look up the leaf blodlo an ExHash regime. The hash table starts out being half
disk address in the hash table, read the leaf block, ahd size of a file system block and is stuffed into the din-
search the leaf block for the directory entry. ode. All that is necessary to find any entry is to look up

The trick to this hashing scheme is that the hash talttee leaf block address in the stuffed hash table and read
can grow in size as entries are added. The hash tablaithe leaf block. Because the dinode (and hash table) are
always a power-of-two in size. This power-of-two deterlready in memory, any directory entry can be found in
mines how many bits of the hash are used as an indere block read.
When the hash table becomes too small to hold the numwhen the hash table doubles, it can't be stuffed any-
ber of directory entries it needs it doubles in size, and om®re and is stored in the file data associated with the di-
more bit of the hash is used. This allows a very largectory. From then on any entry can be found in 1 read
number of directory entries to be added without having td a hash table block, plus the number of indirect blocks
resort to linked lists of leaf blocks. between the dinode and the hash table, plus 1 read for the

Instead of allocating one leaf block per hash table entlgaf block.
leaf blocks can be pointed to by multiple hash table en-It is probably a good idea to keep the hash table from
tries. This allows hash table pointers to share leaf bloggowing too big. Since the hash is 32 bits, the hash ta-
with other hash table pointers that have small numbershié could potentially take up3? bytes multiplied by the
directory entries. This makes ExHash memory efficientsize of a leaf block pointer (8 bytes). It is possible (but
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Hash: 0010 Hash: 1010
Name: index.html Name: file.001
Inode#: 23 Inode #: 100
Hash: 0101 Hash: 1111
Name: file.002 Name: datafilel
Inode #: 300 Inode#: 3
Hash: 0001

Name: datafile2

Inode#: 123

Figure 3: An ExHash directory: The hash table has a size of four and there are two leaf blocks.

Hash: 0010 Hash: 1010
Name: index.html Name: file.001
Inode #: 23 Inode #: 100
Hash: 0001 Hash: 0101 Hash: 1111
Name: datafile2 Name: file.002 Name: datafilel
Inode#: 123 Inode #: 300 Inode#: 3
Hash: 0011

Name: inode.c

Inode #: 101

Figure 4: The directory from Figure 3 after the file “inode.c” was added. The addition forced the leftmost leaf block
to be split.

‘000‘001‘010‘011‘100‘101‘110‘111‘

Hash: 0001 Hash: 0010 Hash: 1010
Name: datafile2 Name: index.html Name: file.001
Inode#: 123 Inode#: 23 Inode#: 100
Hash: 0000 Hash: 0101 Hash: 1111
Name: super.c Name: file.002 Name: datafilel
Inode#. 5 Inode#: 300 Inode#: 3

Hash: 0011

Name: inode.c

Inode#: 101

Figure 5: The directory from Figure 4 after the file “super.c” was added. The addition forced the hash table to be
doubled and the leftmost leaf block to be spilit.
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extremely unlikely) that a set of files with the same hashThe tree is arranged in such a way that a search for an
could be added to the directory. This would cause tkatry involves starting at the root and following a branch
hash table to grow to it's maximum size very quicklyto its leaf. The entry will be found at one of the blocks
Since 32 gigabytes is much too large for a directory (akbong the path. The search time (in terms of the number
least for now), GFS has a compile-time constant that prd-block reads) is between one afidlog,(n)). Itis more
vents the hash table from growing beyond a certain siiely to be closer to the upper bound because there are
(16 megabytes by default). If the directory needs to grawwre entries close to the leaves.
beyond this size, leaf blocks are chained together in linkedAs a comparison, assume a GFS directory with a block
lists. This increases the average access time for directsize of 4096 bytes and a directory entry size of 280 bytes.
lookups, but very slowly, requiring about one more didRirectory entry lookup times for a ExHash directory with
access every time the size of the directory doubles. (@ to 469 million entries is three block reads (this in-
this point the directory holds about 29 million entries, seludes one indirect metadata block, one hash block and
doubling it isn’t very likely). one leaf block). A comparable B-Tree directory would
Adding and deleting directory entries takes the sarhave a height of at least six. The ExHash directory would
amount of time as a directory search. Reading the entieat least twice as fast, on average. Access times for Ex-
contents of a directory is just as slow as in a linear ditash consistently beat B-trees for all ranges of directory
rectory because every block must be read. Every otlséres.
operation is much faster than it would be compared to aThe number of 1/0Os necessary to insert an entry into
directory stored in a linear fashion. the directory is also another measure of efficiency. The
common case for both ExHash and B-trees is an addition
to a block with no overflow (i.e., there is enough room in
the block to hold the entry). For an ExHash directory that
Assuming a 4096-byte block size and 280-byte directdigkes the same amount of time as a search. B-trees always
entries, a GFS ExHash directory can hold up to abadd entries to their leaves, so that means when adding a
1700 files and find any file in one block read. In thisode the whole height of the tree must be traversed.
case, the hash table is stuffed. A stuffed hash table haFhe more complicated case occurs when the block that
half as many pointers as can fit in a FS block. Pointers &teould receive the entry has no room for it. A ExHash di-
eight bytes, so 512 pointers can fit in a FS block. Theactory splits the leaf block in two. This involves accesses
the hash table has 256 entries. Each leaf block has at@2he two leaf blocks and changing some of the pointers
byte header, so the number of directory entries that darthe hash table. A B-tree overflow involves shifting en-
fit in a leaf block is%%5=32 = 14.5. Assuming that an tries to neighbor and parent blocks and possibly allocating
ExHash directory is about half full before the hash ta-new block. The operations for both schemes are roughly
ble doubles (a more than fair assumption), it could homparable.
3 x 14 x 256 = 1792 entries. The dinode (and con- The most costly case for ExHash is when leaf block
sequently the hash table) is always in memory if the dian't be split and the hash table needs to be doubled. The
rectory is open, so all that needs to be done is read Hgsh table must be read into memory and written back at
appropriate leaf block, i.e. one read. twice it's previous size. (Then the leaf block is split.) As
Using similar logic and the knowledge that a GFS dihe hash becomes bigger, this becomes more and more ex-
rectory with a 4096-byte block size can grow to 1310%&nsive but fortunately, less and less frequent. The patho-
hash table entries before any indirect blocks are needetbgical case for B-trees is the successive overflow from
store the table, it's possible to figure out how man entriehild block to parent block all the way back to the root
can be access in two block reads:x 14 x 131072 = block, causing the tree to grow a block in height. There
917504 are also less pathological cases where the restructuring
doesn’t go all the way back to the root, but only part way
up the tree. In these worst-case scenarios, ExHash is prob-
ably a little bit worse than B-Trees, but in most cases it
A comparison with B-trees [21] is warranted. B-trees arendll be faster.
common method of organizing directories in which blocks Space efficiency is another concern. What percentage
of directory entries are laid out in a tree pattern. Eadfithe space used by the directory is actually used to hold
block has pointers t@d + 1 other blocks, wherd is the directory entries? B-trees are always guaranteed to be at
order of the tree. least half full. There are variants that are guaranteed to

4.1.3 Access Times

4.1.4 Comparison with B-Trees
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be two-thirds full. They also have very little organizationary type” key spaces. As far as the authors know, the
overhead. Every block used in the directory holds diregpproach of using a CRC as the hash function for for an
tory entries. The only organizational data stored are thetendible hash directory hasn't been used before.

n + 1 data pointers stored in each block for evergn-  The GFS directory code was instrumented so that it can
tries. provide measurements of the space efficiency of directo-

There is no limit on what percentage of a directoryldes as they are filled. The measure is defined as:

allocated space is actually used by directory entries. The .
space efficiency of the directory is dependent on the qual- eff = Number Of Eptnes (1)
ity of the hash function (see section 4.1.5). ExHash di- Number Of Block¢Entries Per Block

rectories also have blocks that don’t hold directory entrigg,o efficiency number indicates the fraction of the space

(i.e., the hash table). This lowers the space efficiency Qfscated for the directory that actually contains directory

the directory somewhat, but the hash table generally tak@sies

up less than one percent of the size of the leaf blocks.  ag a test, a directory was filled with 45,402 files named
We feel that, on average, Extendible Hashing providgfier dictionary words. This was done twice. Once when

a better method of directory organization that B-trees. dfrs was using a conventional hash (from [20]) and once

is quicker than B-trees but a little bit more space-hung{ysing a CRC hash. The results can be seen in figure 6.

Given the steep increase in available disk space and i EntriesPerBlockvalue from Equation 1 is abott.6.
much slower decrease in access times, we feel that this igne efficiency results for the conventional hash were

the right trade-off. good until about the 27,000th entry. At this point, the con-
ventional hash produced too many almost identical hashed
4.1.5 The Hash Function keys. The new entry caused a leaf to overflow. Because

the hashed keys were almost identical, the entries weren’t

The hash function used in this algorithm is important. &plit evenly between the two new leaves. In fact, they all
must provide a uniform distribution of the hashed keysere put into one leaf. This overflowed the leaf again and
If the distribution isn’t uniform enough, the directory willcaused a second split. This overflowing continued until
be less space efficient. Lower space efficiency translag@sre was only one pointer from the hash table to the leaf.
into slower access times due to bigger hash tables, matehis point, the overflowing caused the hash table to be
indirect blocks between the inode and the hash table dafeubled. Then the leaf could be split, but the split resulted
and therefore more block reads per lookup. in another overflow, which caused the hash table to double

One important thing to consider is the set of keysgain, and so on.
used in the hash. Common hash functions are designeth short, the hash table ballooned up to its maximum
to work well on words from a dictionary. Keys fromsize of 16 MB. All the space required by the hash table re-
this key space don’t have too much in common wittluced the space efficiency of the directory. In contrast, the
each other. The keys that GFS’s hash function has@®C hash provided a more uniform distribution of hash
deal with are much more structured. One good exakeys. This increased the efficiency of the CRC hash di-
ple is a numerical time-domain electromagnetics simtectory and made it more consistent. It also prevents the
lation program that dumps out thousands of files nameascading overflow situation. Directories with millions
after the time step that generated them (“timestep.00004df entries have been created using the CRC hash and re-
“timestep.00002”, “timestep.00003”, and so on). Datgmated overflow has never been a problem.
are another common element in the filenames of files thaiwhen the hash table swells to its maximum size, the
exist in large directories. Most common “fold and hashdccess time for directory lookups is also increased. When
functions [20], [22] fall apart for key spaces that overlaghe hash table is large, finding an entry in the hash table
so much. requires indirect block accesses. (Recall that the hash ta-

GFS uses a 32-bit cyclic redundancy che€R(C) for ble is stored as regular file data.) Also, the overflow of a
its hash function. Because CRCs are designed to deteaf with one pointer is handled by making a linked list
single-bit errors, they provide a much more uniform digrom that leaf. So maximally sized hash tables not only
tribution of hashed keys. The small number of bits the#duces a directories space efficiency, it also reduces its
change between two names that differ by one digit prepeed.
duce a large change in the CRC. Our results show thafrhe same thing was done with 45,402 “filename type”
CRCs perform significantly better than other hashes foames. (We used: file.0000000000, file.0000000001,
“filename type” keys and they even do better for “dicticfile.0000000002, and so on.) The results can be seen in

30



Efficiency
(o] (o]
P
9
| |

0.2 —
o I I I I I I I I I
o 0.5 a1 1.5 2 2.5 3 3.5 4 4.5 5
Number of Files x 10
a1
0.8 — -
§ o6 F\.MW ]
D
=]
5 o.a —
0.2 —
o I I I I I I I I I
(o] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of Files x 10

Figure 6: The space efficiency of a GFS ExHash directory as 45,402 files with names from the dictionary are created.
The top graph shows the performance of a conventional hash. The bottom graph shows the performance of a CRC
hash. The efficiency measure indicates the fraction of the space allocated for the directory that actually contains
directory entries. (i.e. — An efficiency of one is optimal)
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Figure 7: The space efficiency of a GFS ExHash directory as 45,402 files with names “file.0000000000” through
“file.0000045401" were created. The top graph shows the performance of a conventional hash. The bottom graph
shows the performance of a CRC hash.

31



Figure 7. The conventional hash caused the hash tabléaier between the file system and the NSP volume driver
double to maximum size within the first 1500 entries. Thhat examines each Dlock command before it is issued. If
efficiency of the CRC hash oscillates more than it did féine Dlock has already been acquired by a process with the
the dictionary words, but the hash table remains a reassame process ID, a counter is incremented and the com-
able size. mand is passed back up to the file system as if it was is-

In summary, the CRC hash function produces mushed to the lock device and succeeded. If the lock is held
better results than the conventional hash function. Thyg another process, the requesting process is put to sleep
CRC hash function is also fast. It is implemented in a fewntil the first process releases the lock. If the Dlock isn’t
basic operations (AND, Shift, NOR, etc) and a lookup incurrently held, the command is passed down to the pool
1 KB lookup table. The time require to compute the CRd@evice and is issued to the actual Dlock device.

hash is comparable to conventional hashes. When an unlock command is issued, the counter is
decremented. When it reaches zero, the unlock command
. is passed down to pool and issued to the device.
4.2 GFS Consistency P P

An interesting and useful side effect of this algorithm
Great care must be taken when metadata is accessedi@tigpt it prevents multiple simultaneous lock requests to
updated. If the proper Dlocks aren’t held at the right tim@,lock device from the same machine. If one process has
metadata and data corruption can easily result. Much&Plock and another process wants the same Dlock, the
the recent GFS work has focused on making sure ti§&cond process sleeps on a semaphore waiting for the first
locks are held in all the right places. process to finish. This minimizes the amount of traffic on

This new locking has also increased the potential e network.
deadlock. There are many places where the file systenT his recursive Dlock layer will be very important in the
must hold two or more Dlocks to perform an operatiofi€Xt generation GFS. In this new version, GFS will hold
For examp|e, the |ookup operation requires two Simu|t@JOCkS much Ionger that it does now. This allows write
neous locks. The lookup operation takes a directory ag@ching and minimizes the effects of Dlock latency. Re-
the name of a file in that directory and returns the inode fe¢rsive Dlocks allow these locks to be held longer with
that file. Two locks must be acquired for this operatiofifinimal changes to the code.
one lock must be held while the directory is read and theTo enable caching, when a Dlock is first acquired, the
file’s inode number is determined. The other lock must Bumber of times locked” counter is set to 2 (instead of
held while the inode is read. These two locks must be héft¢ usual 1). From this point forward the code acquires
at the same time or race conditions exist with other prand releases locks as it normally would. The difference is
cesses on the same machine doing lookups on the séngé the lock and release command are all internal to the
file, and other processes and machines trying to unlifile system and don’t access the lock device. When the file
this file. system needs to release the lock on the lock device, it calls

There are a few other places where two or more locte unlock routine one more time. This decrements the
are held and deadlock can occur. Ordering the acquisitiémber of times locked” counter to zero and the unlock
of the Dlocks is difficult because Dlocks are assigned &#@mmand is issued to the lock device.
bitrarily to different parts of the directory structure. An
order that would prevent deadlock.for one part of the fi@_?) Using the Buffer Cache
system tree could cause deadlock in other parts.

GFS handles this problem by implementing a systefime buffer cache is an important component of modern
of back-offs and retries. If a client is holding one DIockJNIX operating systems [23], [2]. To prevent excessive
and wants another, it tries to get the new lock for a certalisk accesses the operating system saves recently used
amount of time. If it doesn’t get the lock in this time, idisk blocks in a section of memory called the “buffer
assumes a deadlock condition exists. It releases the fiethe”. Future requests for data already in the buffer
lock, sleeps for a random amount of time, and then reache can be completed quickly since no disk access is
tries the whole operation. This avoids deadlock, butréquired. If the requested data is not in the buffer cache, it
isn't optimal. The new version of the Dlock protocol alis read from disk and then copied into the buffer cache as
lows clients to talk to each other directly, so that a separatell as to the user program. This applies to both metadata
fairness and sharing protocol can be applied if necessaand file blocks.

Another new feature is that processes can now recurinlike IRIX, Linux presently provides no “direct” disk
sively acquire Dlocks. This was implemented by addingacess to bypass the buffer cache. Large disk reads on
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IRIX can benefit significantly from no buffering because The new approach, using an extent-based scheme, can
only one memory copy is performed in the OS rather thaotentially cost more in terms of space but should provide
two. Ordinary usage on both platforms, however, is chdretter performance. Instead of keeping track of each file
acterized by frequent small file reads. In this case psistem block in a resource group, we restrict ourselves
formance is greatly enhanced by using the buffer cadioethe free blocks. For every group of free file system
instead of accessing the disk. Caching metadata blobkscks in a resource group there will be an extent that
also improves performance for large file requests becalseps track of the starting block and the number of blocks
of repeated indirect block references. in the group, as shown in Figure 8. When the file sys-
Using the buffer cache in GFS is complicated by tHem is created, it has one extent in each resource group.
ability of multiple clients to access and cache the saiénen files are added only the starting address in the ex-
disk blocks. When a client detects data has changedtent needs to be changed. As files are removed, if the
disk (indicated by a new Dlock counter value), it needgpace freed cannot be added to an existing extent, a new
to invalidate those blocks in its buffer cache so the neame must be added. If the file system becomes highly frag-
data will be re-read. Recent changes in GFS keep trackwénted, the amount of space necessary to hold the extents
cached buffers associated with each Dlock so they canrbay become large.
invalidated when necessary. This allows use of the bufferThere are two distinct advantages to this method. First,
cache for reads, providing data for repeated small file there is no need to search through a mapping of blocks in
guests and speeding up large file accesses. Without thrider to find the blocks that are free. Since we already
ability in the past, all buffers were immediately invaliknow the blocks we are tracking are free, our focus is to
dated after a read. Caching of writes is more difficult arfithd a group of free blocks that is large enough to hold
cannot be implemented in GFS until the latest Dlock spemdr entire file. The second advantage of this scheme is
ification is in use [12]. that we can give the block allocator a “goal” block, i.e.,
Linux uses any spare memory as buffer space and aghlock that we would like our new space to follow. This
claims this space when memory demands are higher. Thiay we can attempt to group metadata and data together
further complicates the issue as GFS must not attempoto disk. While this approach may require more time to
invalidate a buffer which has been reclaimed by the O&arch through the extents to find an extent that starts
Inserting a function pointer in the buffer head allows @osely after the goal block, it has the potential to reduce
GFS routine to remove the link to the departing buffelisk latencies in the future.
head. These changes in the Linux buffer managementrou-
tines were possible because the kernel source was avail-
able. IRIX source code would enable similar improve—'&5 The Network Storage Pool

ments to GFS IRIX in the future. The pool driver coalesces a heterogeneous collection of
With support for buffering in place, block read-aheaghared storage into a single logical volume called the Net-
can now be effective. In this approach, a block requegérk Storage Pool. The pool driver is built atop the SCSI
results in the next several blocks also being read at #¢4 Fibre Channel drivers and is similar to SGI's xlv and
same time and stored in the buffer cache. Program logghux’s md. It allows striping across multiple devices and
ity makes subsequent block reads likely, and pre-fetchipgvides a pool of Dlocks for GFS, hiding the implemen-

them can improve overall performance. tation details. Devices may be divided into subpools ac-
cording to specific performance characteristics.
4.4 Free Space Management Recent changes to the pool driver adapted it to the mod-

ular Linux block driver interface. The device locking op-
The current implementation of free space managementions in the pool driver have also evolved to support ex-
GFS is based on the bitmap approach. For every file spenential back-off from failed lock requests, multiple at-
tem block in a given resource group there is a single b#mpts to acquire locks, and giving up on Dlocks. We
to represent whether the block is free or not. This methack developing a Dlock server daemon that runs over any
is space efficient but as the file system fills with data,|B network. This capability will be helpful in GFS de-
search through an increasing number of bits is requiredvielopment and will help those without Dlock support in
order to find the necessary free space. This becomes ntbesr disk drives. (Note that GFS can be run in single ma-
costly with respect to performance with every additionahine mode with Dlocks disabled, which means that GFS
byte we need to check, and even more expensive wheaah function efficiently as just another Linux desktop file
is necessary to search through individual bits. system using any kind of disk.) Other pool driver addi-
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tions include user-level tools to dynamically update pook6 New Dlock Features

in the kernel, and to dynamically create file systems ba
on pool parameters.

d .
S1ehe new version of the Dlock protocol has features that
allow GFS to perform better and more reliably. The new

lock protocol is fully defined in [12]. The main additions

Ptoolis a user-level tool which configures pool devicegye-

according to a parameter file edited by the user. The
pool name, subpool definitions, subpool devices (individ- ¢
ual disk partitions), striping sizes and scope, and Dlock
devices can be specified in the parameter file. Labels con-
taining all this information are written bytoolto the be-
ginning of each disk partition used by the podPtool
needs to be run only once by one client for a pool to be
created and accessible to all clients.

Passemblés the user level program which scans all the
devices accessible to a client to determine what pools exist
and can be used. All the labels on the shared devices (writ-
ten byptool) are read to construct the logical pool defini-
tions. This information is then passed to the kernel which
adds these definitions to its own list of managed pools. An
important early improvement removed specific major and
minor numbers from pool labels as various clients may
identify devices differently. The requirement for a desig-
nated label partition has also been removed. New storage
pools can be written, assembled and added to the kernel
dynamically.Passembl@eeds to be run by each client at
bootup and when a new pool has been created. Pool de-
vice files are also created and removedpagsembleas
storage pools are added and destroyed.

34

Dlocks Time Out

Each Dlock now has a timer associated with it. If
the lock is left in the locked state for too long, the
lock expires and is unlocked. A client that wishes to
hold a lock for a long time can send “Touch Lock”
commands that reset the timer on the lock.

This new feature fixes one of the bigger performance
problems in GFS. It allows the addition of write
caching. Previously, clients had to discover failed
clients by pinging the lock for some minimum time;
the lock was reset manually if there was no activity.
This meant there was a maximum amount of time
that a lock could be held.

In the new version, when Dlocks time out, the lock
device determines which clients have failed. A client
can hold a lock for a long period of time and be as-
sured that no other client can read or write the data
protected by the lock. This means that the client
doesn’t have to synchronously write back modified
data so that extensive write-caching is now possible.



¢ Client Identification Numbers are returned implementation requires that Dlocks be held for long pe-

Each GFS client in the new locking scheme is agpds of time. Without the overhead of acquiring locks,
signed a unique four-byte integer. Thdent ID is small I/0O request bandwidth should noticeably improve.

passed to the Dlock device in the SCSI CommandFigure 10 shows the bandwidth for preallocated writes
Descriptor Block of the Dlock command. on the same system. For preallocated writes, the metadata
. ) (and location of the data blocks) is quickly cached up and
Dlock commands that fail because the lock is held B4 s written out as fast as possible. Not having to al-
another client return the Client IDs of the machinggcate blocks increases the file system speed by about 25
that are currently holding the lock. This allows oUtyarcent. In the last IRIX release, preallocated writes were
of-band communication between clients while still, ¢ twice as fast as creates [24]. The fact there there is
keeping GFS Dlock-centric. such a small difference between creates and preallocated
This also helps clients hold locks for longer amounygrites is a tribute to Linux GFS’s new block allocation
oftime. Ifa clientwants a lock that is held by anotheputines and read caching.
client, it can use the returned Client ID to send a non-The read bandwidth shown in Figure 11 peaks at about
SCSI message to the client holding the lock. Th&8 MB/s. This is faster than the buffered 1/0 of IRIX GFS
message can either ask for the lock to be releag@dich peaked about 23 MB/s). The most noted improve-
or, perhaps, ask for authorization to do a third-partyaent over IRIX GFS is in the small I/O request sizes. The

transfer to or from the disk. bandwidth for small request sizes in IRIX GFS was about
_ one to two megabytes per second. (The same was true for
» Reader/Writer Locks Linux GFS before read caching was implemented.) With

Many pieces of data, especially metadata, are rd&@d caching, small request I/O for Linux GFS is about
often but written infrequently. This type of access2 MB/s. We expect this numbers to improve even more
pattern lends itself well to reader/writer locks. Readvhen read ahead and the improved Dlock acquisition rou-
ers acquire one of a multitude of reader locks. Writines are implemented.
ers acquire a writer lock that precludes both readersAll these numbers show that Linux GFS buffered 1/0
and other writers. Each Dlock in the new protocol i significantly better than IRIX GFS buffered I/O. How-
a reader/writer lock. This should help scalability igver, IRIX GFS direct I/O offers a significant speedup.
high traffic areas like the root directory. Peak bandwidth for large 1/Os are 35 MB/s for creates
and 55 MBY/s for reads. (Direct I/O doesn’t offer much
of a speedup for small I/0Os under the old IRIX GFS.) As
5 Performance Results stated in section 3.1.2, Linux does not yet have Direct I/O.
Bandwidth for both reads and writes will increase when
Figures 9 through 11 represent the current single client ks hurdle is overcome.
bandwidth of Linux GFS. The tests were performed on a
533 MHz Alpha with 512 MB of RAM running Linux
2.2.0-pre7. The machine was connected to eight Seaggte Fyture \Work
ST19171FC Fibre Channel drives on a loop with a Qlogic

QLA2100 host adapter card. GFS, at the time of this wr'E;FS has come a long way in the last three years, but it has

ing, has read caching implemented. Read Ahead and Wit \yay to go. Current and future work is described in
caching have not yet been implement. A 4,096-byte blo[.}lﬁe following sections.

size was used for these tests. (A block size of 8,192 bytes
yields numbers that about 10 percent better, but this larger
block size isn’t available on all Linux architectures.) g1 Error Recovery

The bandwidth of first time creates, shown in Figure
9, peaks at around 17.5 MB/s. For small request siz&ror recovery is particularly important in a shared-disk
GFS performance leaves something to be desired at diilly system. All the clients are directly manipulating the
about 1.3 MB/s. This will be greatly improved when writenetadata, so the failure of any client could leave metadata
caching is implemented. Write caching will allow thén a inconsistent state. Furthermore, since there are so
small requests to be built up into bigger ones, and congsgany machines accessing the disks, itis impractical for all
guently improves performance. Right now, Dlocks are agfthem to unmount and wait for a file system chefsic
quired and released for every request. The write cachiegcomplete every time a client dies. It is important that
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Figure 10: Linux GFS preallocated write bandwidth
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Figure 11: Linux GFS read bandwidth

the inconsistencies caused by a failed client are localizadn and would be a good choice if it wasn't so limited.
and easily repairable while the file system is online.  Clearly, some other standard needs to be agreed on.

We are currently investigating a number of methods it GFs succeeds on Linux, it could provide a reference
of recovery that will allow quick consistency checkingmplementation for other programmers writing shared de-
Snapshots, journaling, and logging are among them. Tfige file systems. If other operating systems use the GFS
final version of the paper will describe a scalable metad%tocols and metadata for their shared device file system
logging scheme for GFS. implementations, then interoperability can be achieved

and incompatible shared file system formats avoided.

6.2 OS pool sharing

The port of GFS to Linux has raised the obvious issue of
sharing a file system among both IRIX and Linux client§.3 Growing File Systems
(as well as future platforms for GFS). There are no file
system or pool driver barriers to doing this. Currently, {as devices are added to the storage network, the file sys-
support both Alpha and x86 Linux clients, byte orderingm should be able to dynamically grow and use the new
and structure packing routines have been added to thedj@ce. Enlarging the pool on which the file system re-
system and pool driver. The lack of a common disk pardiides is the first step. This is accomplished by making the
tion format is the last problem to be solved before a Girgw space an additional subpool. (Striping is confined to
file system may be shared among differing operating sssubpool.) Passing the new data to the kernel and adding
tems. the subpool to the in-core structures is a simple process.
For dedicated storage arrays, the easiest solution is jlisé complexity arises in expandipgool andpassemble
to have no partition format at all. When dealing with & dynamically change the pool defining labels and cor-
storage pool made up of hundreds of disks, there is raztly assemble the pool definitions from new, in-use and
point to dividing the disks into pieces. Grouping the disksused devices belonging to multiple pools. At the file
in different ways provides the configure-ability that syssystem level, a program needs to update the superblock
tem architects require. and resource indexes on disk and prompt the file system
There are some situations, particularly involving SC®h each client to reread this data so the new space will be
over IP, where a cross-platform partition format wouldsed. We are working on making the changes to allow the
be useful. The Microsoft partition format is very comfile system to grow like this.
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6.4 A GFSBSD Port a reply back to the client without ever talking to the disk.

) . Other commands could be passed through to the disk.
GFSis targeted at heterogeneous clusters of workstationSrhe plock command could be implemented this way.

This commitment will continue with GFS ports to BSDrpg command is currently in the process of being stan-
UNIX. dardized, but until it becomes wide spread in SCSI de-
vices, the server daemon could emulate it.

6.5 SCSloverlP

By writing code that lets SCSI commands and data flozl ACknOWIedgmentS

over IP networks, the notion of a storage area network is

greatly expanded [25]. A shared device file system idany people have contributed code and ideas to GFS over

GFS can access data that is spread over a much Wiqj"lgryears. The authors would like to thank the following

spectrum of hardware. Instead of network attached stB?—Ople'
age being limited to dedlcatqd (and ex.penswe) disks ary Erom theUniversity of Minnesota
rays, a computer can export its local disks to the IP net-

work and essentially become a network attached storage Benjamin I. Gribstad, Steven Hawkinson, Thomas
device. M. Ruwart, Aaron Sawdey,

Smce.any machine can become a ngtwork attached stor; FromSeagate Technology,
age device, upgrades to more conventional SAN hardware .
doesn’tneed to be as quick. A GFS installation can be cre- Dave And?rson, Jim Coomes, Gerry Houlder, Nate
ated with commodity Ethernet hardware. As the demand Larson, Michael Miller,
for I/O bandwidth increases, Fibre Channel hardware can, EromNASA Ames Research Center
be added to create a Storage Area InterNetwork (See Fig-
ure 12). GFS accesses data with equal ease from the Eth- Alan Poston, John Lekashman
er.net or Fibre Channel networks, but the new hardware, FromCiprico, Inc.
will be faster.

The key to SCSI over IP is two pieces of software, the

client and the server. A server daemon waits for IP con- :
nections. When a connection is made. the daemon r The authors would also like to acknowledge the valu-
. ) ! . ﬁ\?)le comments from the reviewer of this paper, Sam Cole-
ceives SCSI commands that are transmitted to it over the
man.
network. It then repackages those commands and sends
them out across its local SCSI bus to a local disk. (It
could also send them to a Fibre Channel disk it might lReferences
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