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Abstract

In computer systems today, speed and responsiveness is
often determined by network and storage subsystem per-
formance. Faster, more scalable networking interfaces
like Fibre Channel and Gigabit Ethernet provide the scaf-
folding from which higher performance implementations
may be constructed, but new thinking is required about
how machines interact with network-enabled storage de-
vices.

We have developed a Linux file system called GFS (the
Global File System) that allows multiple Linux machines
to access and share disk and tape devices on a Fibre Chan-
nel or SCSI storage network. We plan to extend GFS by
transporting packetized SCSI commands over IP so that
any GFS-enabled Linux machine can access shared net-
work devices. GFS will perform well as a local file sys-
tem, as a traditional network file system running over IP,
and as a high-performancecluster file system running over
storage networks like Fibre Channel. GFS device shar-
ing provides a key cluster-enabling technology for Linux,
helping to bring the availability, scalability, and load bal-
ancing benefits of clustering to Linux.

Our goal is to develop a scalable, (in number of
clients and devices, capacity, connectivity, and band-
width) server-less file system that integrates IP-based net-
work attached storage (NAS) and Fibre-Channel-based
storage area networks (SAN). We call this new architec-
ture Storage Area InterNetworking (SAINT). It exploits
the speed and device scalability of SAN clusters, and pro-
vides the client scalability and network interoperability of
NAS appliances.

Our Linux port shows that the GFS architecture is
portable across different platforms, and we are currently
working on a port to NetBSD. The GFS code is open

source (GPL) software freely available on the Internet at
http://gfs.lcse.umn.edu .

1 Introduction

Traditional local file systems support a persistent name
space by creating a mapping between blocks found on
disk drives and a set of files, file names, and directories.
These file systems view devices as local: devices are not
shared, hence there is no need in the file system to enforce
device sharing semantics. Instead, the focus is on aggres-
sively caching and aggregating file system operations to
improve performance by reducing the number of actual
disk accesses required for each file system operation [1],
[2].

New networking technologies allow multiple machines
to share the same storage devices. File systems that allow
these machines to simultaneously mount and access files
on these shared devices are calledshared file systems[3],
[4]. Shared file systems provide a server-less alternative to
traditional distributed file systems where the server is the
focus of all data sharing. As shown in Figure 1, machines
attach directly to devices across astorage area network.
[5], [6], [7], [8].

A shared file system approach based upon a network
between storage devices and machines offers several ad-
vantages:

1. Availability is increased because if a single client
fails, another client may continue to process its work-
load because it can access the failed client’s files on
the shared disk.

2. Load balancinga mixed workload among multiple
clients sharing disks is simplified by the client’s abil-
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Figure 1: A Storage Area Network

ity to quickly access any portion of the dataset on any
of the disks.

3. Pooling storage devices into a unified disk volume
equally accessible to all machines in the system is
possible.

4. Scalability in capacity, connectivity, and bandwidth
can be achieved without the limitations inherent in
network file systems like NFS designed with a cen-
tralized server.

We began development of our own shared file system,
known as GFS-1 (the Global File System, version 1), in
the summer of 1995. At that time, we were primarily in-
terested in exploiting Fibre Channel technology to post-
process large scientific datasets [9] on Silicon Graphics
(SGI) hardware. Allowing machines to share devices over
a fast Fibre Channel network required that we write our
own shared file system for IRIX (SGI’s System V UNIX
variant), and our initial efforts yielded a prototype de-
scribed in [10]. This implementation used parallel SCSI
disks and SCSI RESERVE and RELEASE commands for
synchronization. RESERVE and RELEASE locked the
whole device, making it impossible to support simulta-
neous file metadata accesses to a disk. Clearly, this was
unacceptable.

This bottleneck was removed in our second prototype,
known as GFS-2, by developing a fine-grain lock com-
mand for SCSI. This prototype was described in our 1998

paper [4] and the associated thesis [11]; we also described
our performance results across four clients using a Fibre
Channel switch and RAID-3 disk arrays. Performance did
not scale past three clients due to heavy lock contention.
In addition, very large files were required for good perfor-
mance and scalability because neither metadata nor file
data were cached on the clients.

By the spring of 1998, we began porting our code to the
open source Linux operating system. We did this for sev-
eral reasons, but the primary one was that IRIX is closed
source, making it very difficult to cleanly integrate GFS
into the kernel. Also, Linux had recently acquired 64-bit
and SMP support and on Digital Equipment Corporation
(DEC) Alpha platforms was much faster and cheaper than
our IRIX desktop machines.

In addition, we had shed our narrow focus on large data
applications and had broadened our efforts to design a
general-purposefile system that scaled from a single desk-
top machine to a large, heterogeneous network enabled for
device sharing. Because we had kernel source we could
finally support metadata and file data caching, but this re-
quired changes to the lock specification, detailed in [12].
This GFS port to Linux involved significant changes to
GFS-2, so that we now refer to it as GFS-3. In the fol-
lowing sections we describe GFS-3 (which we will refer
to as GFS in the remainder of this paper), the current im-
plementation including the details of our Linux port, new
scalable directory and file metadata data structures, pre-
liminary performance results, and future work.
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2 GFS Background

For a complete description of GFS-2 see [4] and for GFS-
1 see [10]. In this section we provide a summary of the
key features of the file system.

2.1 Dlocks

Device Locksare mechanisms used by GFS to facilitate
mutual exclusion of file system metadata. They are also
used to help maintain the coherence of the metadata when
it is cached by several clients. The locks are implemented
on the storage devices (disks) and accessed with the SCSI
device lock command,Dlock. The Dlock command is in-
dependent of all other SCSI commands, so devices sup-
porting the locks have no awareness of the nature of the
resource that is locked. The file system provides a map-
ping between files and Dlocks.

In the original specification [4], each Dlock is basically
a test-and-set lock. A GFS client acquires a lock, reads
data, modifies the data, writes the data back, and releases
the lock. This allows the file system to complete oper-
ations on the metadata that are “atomic” with respect to
other operations on the same metadata.

Each Dlock also has a “version number” associated
with it. When a client wants to do a read-modify-write
operation on a piece of metadata, it acquires the lock, does
the read-modify-write, and releases the lock using theun-
lock incrementaction. When a client just wants to read
metadata, it acquires the lock, reads the metadata, and re-
leases the lock using theunlockaction. If all clients follow
this scheme, consistency can be checked by comparing the
version number returned by a lock action with the value
of the version number when the lock was previously held.
If the version numbers are the same, no client modified
the data protected by the lock and it is guaranteed to be
valid. Version numbers were also used for caching in the
distributed lock manager of the Vaxcluster [6].

2.2 The Network Storage Pool

The network storage pool (NSP) volume driver supports
the abstraction of a single unified storage address space
for GFS clients. The NSP is implemented in a device
driver layer on top of the basic SCSI device and Fibre
Channel drivers. This driver translates from the logical
address space of the file system to the address space of
each device. Subpools divide NSPs into groups of similar
device types which inherit the physical attributes of the
underlying devices and network connections.

2.3 Resource Groups

GFS distributes its metadata throughout the network stor-
age pool rather than concentrating it all into a single su-
perblock. Multiple resource groups are used to partition
metadata, including data and dinode bitmaps and data
blocks, into separate groups to increase client parallelism
and file system scalability, avoid bottlenecks, and reduce
the average size of typical metadata search operations.
One or more resource groups may exist on a single device
or a single resource group may include multiple devices.

Resource groups are similar to the Block Groups found
in Linux’s Ext2 file system. Like resource groups, block
groups exploit parallelism and scalability by allowing
multiple threads of a single computer to allocate and free
data blocks; GFS resource groups allow multiple clients
to do the same.

GFS also has a single block, the superblock, which con-
tains summary metadata not distributed across resource
groups. (The superblock may be replicated to improve
performance and ease recovery.) This information in-
cludes the number of clients mounted on the file system,
bitmaps to calculate the unique identifiers for each client,
the device on which the file system is mounted, and the
file system block size. The superblock also contains a
static index of the resource groups which describes the
location of each resource group and other configuration
information.

2.4 Stuffed Dinodes

A GFS dinode takes up an entire file system block be-
cause sharing a single block to hold metadata used by
multiple clients causes significant contention. To counter
the resulting internal fragmentation we have implemented
dinode stuffing which allows both file system informa-
tion and real data to be included in the dinode file sys-
tem block. If the file size is larger than this data section
the dinode stores an array of pointers to data blocks or
indirect data blocks. Otherwise the portion of a file sys-
tem block remaining after dinode file system information
is stored is used to hold file system data. Clients access
stuffed files with only one block request, a feature partic-
ularly useful for directory lookups since each directory in
the pathname requires one directory file read.

Consider a file system block size of 4 KB and assume
the dinode header information requires 128 bytes. With-
out stuffing, a 1-byte file requires a total of 8 KB and at
least 2 disk transfers to read the dinode and data block.
With stuffing, a 1-byte file only requires 4 KB and one
read request. The file can grow to 4 KB minus 128 bytes,

 



25

or 3,968 bytes, before GFS unstuffs the dinode.
GFS assigns dinode numbers based on the disk address

of each dinode. Directories contain file names and accom-
panying inode numbers. Once the GFS lookup operation
matches a file name, GFS locates the dinode using the as-
sociated inode number. By assigning disk addresses to
inode numbers GFS dynamically allocates dinodes from
the pool of free blocks.

2.5 Flat File Structure

GFS uses a flat pointer tree structure as shown in Figure
2. Each pointer in the dinode points to the same height of
metadata tree. (All the pointers are direct pointers, or they
are all indirect, or they are all double indirect, and so on.)
The height of the tree grows as large as necessary to hold
the file.

The more conventional UFS file system’s dinode has a
fixed number of direct pointers, one indirect pointer, one
double indirect pointer, and one triple indirect pointer.
This means that there is a limit on how big a UFS file
can grow. However, the UFS dinode pointer tree requires
fewer indirections for small files. Other alternatives in-
clude extent-based allocation such as SGI’s EFS file sys-
tem or the B-tree approach of SGI’s XFS file system. The
current structure of the GFS metadata is an implementa-
tion choice and these alternatives are worth exploration in
future research.

3 GFS on Linux

Work on the Global File System started on SGI’s IRIX
operating system. IRIX is optimized for a big data en-
vironment and provides a lot of tools needed to develop
GFS. The two things that IRIX lacks are kernel interface
documentation and easily available kernel source.

In order for the file system module to interact with other
parts of kernel, the writer of the file system needs to un-
derstand the interfaces to those other parts of the kernel.
This understanding is easily achieved in one of two ways:
reading the documentation of the interfaces or, if no doc-
umentation exists, reading the source that implements the
interface. (Some have argued that source code is the only
true documentation.) Neither of these options are avail-
able for IRIX.

A open source operating system, like Linux, is ideal for
developing new kernel code. The source code is freely
available. All kernel interfaces can be understood with
a little bit of examination and cogitation. Because the
source code is freely available, documentation can be

written by third parties [13], [14]. We expect that what-
ever shortcomings Linux currently has with respect to ma-
nipulating large data sets will be overcome with time.
GFS development is now focused primarily on Linux.

3.1 IRIX vs Linux

There are big differences between the IRIX and Linux Vir-
tual File System (VFS) layers. IRIX uses the standard
SVR4 VFS/Vnode interface, while Linux uses a home-
grown approach.

3.1.1 VFS caching

Both VFS layers provide (roughly) the same set of system
calls and make similar requests to the file system specific
code. Their approach is different, though. The SVR4 VFS
layer was planned to support networked file systems from
the start [15]. In contrast, the Linux file system is more
oriented towards optimizing local file systems.

The boundary between the IRIX/SVR4 VFS layer and
the file system specific code is very clean. Every time the
VFS layer needs information from the file system specific
layer, it makes a function call to the file system dependent
layer for that information. It remembers almost nothing
about previous requests.

This is very good for a networked file system. One ma-
chine can change data in the file system without worrying
about other machine’s VFS layers caching that data. The
VFS layer always asks the file system specific layer when
it wants information. The file system specific layer can
always provide the most up to date metadata.

The Linux VFS layer, on the other hand, knows a lot
about the files it is accessing. It has its own copies of the
file size, permissions, link count, etc. For local file sys-
tems, this works great. All disks accesses go though the
VFS layer anyway, so the VFS layer might as well cache
the data as it goes by. Local file systems can be very quick
because the VFS avoids the overhead of calling the neces-
sary function and waiting for the file system specific layer
to locate and encode the requested information. It just
reads the data from its own copy. Local file systems can
also be simpler than their SVR4 counterparts. The Linux
VFS layer does permission checking automatically. The
writer of the local file system doesn’t need to be as con-
cerned with the intricate details of how UNIX manages
permissions.

However, this makes designing and implementing a
network file system more difficult in Linux. Uncontrolled
caching in a networked file system, especially a shared-
disk file system, can result in data inconsistencies between
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Figure 2: A GFS dinode. All pointers in the dinode have the same height in the metadata tree.

machines. The Linux VFS layer does provide some calls
to the file system specific code to prevent the use of stale
data, but it is awkward and not nearly as efficient as the
SVR4 VFS. There are many places where the Linux VFS
checks on file metadata (permissions, etc.) before it calls
the file system specific code. In most cases, that data has
to be rechecked in the file system specific code to avoid
race conditions. SVR4 VFS doesn’t make the check in
the first place, so it is only done once (in the file system
specific layer).

Linux is open source software and the development
group is open to new ideas. One of the goals of the
GFS group is to affect change in the Linux VFS layer that
makes it more efficient for all file systems in general and
GFS in particular.

3.1.2 Direct I/O

IRIX has something called Direct I/O. It allows a file
system to copy data directly to and from the disk and a
user buffer. This eliminates a memory copy, as normal
buffered I/O reads data off the disk into the buffer cache
and then copies it into the user buffer. Direct I/O can offer
significant speed improvements in large file access.

At this time, Linux doesn’t have an equivalent to Di-
rect I/O. All disk I/O must pass through the buffer cache.

Stephen Tweedie has written a patch for Linux that im-
plements Direct I/O [16], but it won’t go into the official
kernel until version 2.3.

3.2 Linux Fibre Channel support

Currently, one Fibre Channel (FC) [17] driver is avail-
able for Linux. It was written at the University of New
Hamphshire (UNH) InterOperability Lab for the Qlogic
ISP2100 [18]. The driver is integrated into the Linux
driver hierarchy so all attached FC devices appear in
the file system as standard SCSI (sd) devices. The pre-
installed firmware on the QLA2100 adapter currently sup-
ports only FC loops. Updated firmware with fabric sup-
port may be obtained. To date, we have not yet tested with
the fabric-supporting firmware. New work on the driver
will also be required to support fabrics. (A good descrip-
tion of Fibre Channel technology, including both loops
and fabrics, can be found in the book by Benner [17].)

4 File System Improvements

Many improvements have been made to the file system
and metadata structures described in [4] and [10]. These
changes will, we believe, dramatically increase GFS’s
scalability.
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4.1 Directories and Extendible Hashing

One of the places where traditional file systems don’t per-
form well is large directories. Most early file systems (and
a surprising number of modern ones) store directories as
an unsorted linear list of directory entries. This is satis-
factory for small directories, but it becomes too slow for
big ones. On average, the file system must search through
half of the directory to find any one entry. Not only is this
costly in CPU time, but it causes excessive I/O to the disk.
Large directories can take up megabytes of disk space.

The Global File System uses Extendible Hashing [19],
[20] for its directory structure. Extendible Hashing (Ex-
Hash) provides a way of storing a directory’s data so that
any particular entry can be found very quickly. Large
amounts of searching aren’t required.

For example, assuming a 4096-byte block size and 280-
byte directory entries, a GFS ExHash directory can hold
up to about 1700 files and find any file in one block read.
A ExHash directory that contains up to about 910,000 files
can find any file in two block reads. This compares to
searching through (on average) half of the 62,000 blocks
necessary to hold the directory if an unsorted linear list
is used. Section 4.1.3 goes over how these numbers we
arrived determined.

4.1.1 How does ExHash work?

The basis of ExHash is a multi-bit hash of each filename.
A subset of the bits in the hash is used as an index into a
hash table. The pointers of the hash table point to “leaf
blocks” that contain the directory entries themselves. A
particular entry in an ExHash directory is found using
the following steps: Compute the 32-bit hash of filename,
take the left X bits from the hash, look up the leaf block
disk address in the hash table, read the leaf block, and
search the leaf block for the directory entry.

The trick to this hashing scheme is that the hash table
can grow in size as entries are added. The hash table is
always a power-of-two in size. This power-of-two deter-
mines how many bits of the hash are used as an index.
When the hash table becomes too small to hold the num-
ber of directory entries it needs it doubles in size, and one
more bit of the hash is used. This allows a very large
number of directory entries to be added without having to
resort to linked lists of leaf blocks.

Instead of allocating one leaf block per hash table entry,
leaf blocks can be pointed to by multiple hash table en-
tries. This allows hash table pointers to share leaf blocks
with other hash table pointers that have small numbers of
directory entries. This makes ExHash memory efficient.

Leaf blocks always have a power-of-two number of
hash table pointers pointing to them. When a directory
entry is added to a full leaf block, the leaf block is split
into two separate leaf blocks. Half of the hash table point-
ers point to the original leaf block and half point to the
new leaf block. Directory entries are distributed between
the two leaf blocks so that they are pointed to by the cor-
rect element of the hash table. When a leaf block needs to
be split but it is only pointed to by one hash table pointer,
the size of the hash table is doubled. There are then two
pointers to the leaf block and the leaf can be split nor-
mally.

An example ExHash directory can be see in Figures 3–
5. It shows a small hash table with a size of four. The first
two bits of each file’s hash are used in the table lookup. In
this example, each leaf block holds three directory entries.

The GFS hash tables are stored as regular file data
in the directory and accessed using the standard vnode
read/write routines. This allows the hash table to grow
to arbitrary sizes and still preserve optimal access time to
any particular pointer. The leaf blocks are stored outside
of the regular file metadata in blocks that are allocated by
the directory routines.

GFS has two modes of directory operation. When the
number of directory entries is small enough to fit in the
part of the dinode normally reserved for metadata point-
ers, they are stuffed in that area, just as small regular files
are stuffed in the dinode. The dinode is already in mem-
ory if the directory is open, so zero reads are required to
find any entry.

4.1.2 Growing the Hash Table

When the directory can no longer be stuffed it is converted
to an ExHash regime. The hash table starts out being half
the size of a file system block and is stuffed into the din-
ode. All that is necessary to find any entry is to look up
the leaf block address in the stuffed hash table and read
in the leaf block. Because the dinode (and hash table) are
already in memory, any directory entry can be found in
one block read.

When the hash table doubles, it can’t be stuffed any-
more and is stored in the file data associated with the di-
rectory. From then on any entry can be found in 1 read
of a hash table block, plus the number of indirect blocks
between the dinode and the hash table, plus 1 read for the
leaf block.

It is probably a good idea to keep the hash table from
growing too big. Since the hash is 32 bits, the hash ta-
ble could potentially take up232 bytes multiplied by the
size of a leaf block pointer (8 bytes). It is possible (but
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Figure 3: An ExHash directory: The hash table has a size of four and there are two leaf blocks.
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Figure 4: The directory from Figure 3 after the file “inode.c” was added. The addition forced the leftmost leaf block
to be split.
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Figure 5: The directory from Figure 4 after the file “super.c” was added. The addition forced the hash table to be
doubled and the leftmost leaf block to be split.
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extremely unlikely) that a set of files with the same hash
could be added to the directory. This would cause the
hash table to grow to it’s maximum size very quickly.
Since 32 gigabytes is much too large for a directory (at
least for now), GFS has a compile-time constant that pre-
vents the hash table from growing beyond a certain size
(16 megabytes by default). If the directory needs to grow
beyond this size, leaf blocks are chained together in linked
lists. This increases the average access time for directory
lookups, but very slowly, requiring about one more disk
access every time the size of the directory doubles. (At
this point the directory holds about 29 million entries, so
doubling it isn’t very likely).

Adding and deleting directory entries takes the same
amount of time as a directory search. Reading the entire
contents of a directory is just as slow as in a linear di-
rectory because every block must be read. Every other
operation is much faster than it would be compared to a
directory stored in a linear fashion.

4.1.3 Access Times

Assuming a 4096-byte block size and 280-byte directory
entries, a GFS ExHash directory can hold up to about
1700 files and find any file in one block read. In this
case, the hash table is stuffed. A stuffed hash table has
half as many pointers as can fit in a FS block. Pointers are
eight bytes, so 512 pointers can fit in a FS block. Then
the hash table has 256 entries. Each leaf block has a 32
byte header, so the number of directory entries that can
fit in a leaf block is4096�32

280
= 14:5. Assuming that an

ExHash directory is about half full before the hash ta-
ble doubles (a more than fair assumption), it could hold
1

2
� 14 � 256 = 1792 entries. The dinode (and con-

sequently the hash table) is always in memory if the di-
rectory is open, so all that needs to be done is read the
appropriate leaf block, i.e. one read.

Using similar logic and the knowledge that a GFS di-
rectory with a 4096-byte block size can grow to 131072
hash table entries before any indirect blocks are needed to
store the table, it’s possible to figure out how man entries
can be access in two block reads:1

2
� 14 � 131072 =

917504

4.1.4 Comparison with B-Trees

A comparison with B-trees [21] is warranted. B-trees are a
common method of organizing directories in which blocks
of directory entries are laid out in a tree pattern. Each
block has pointers to2d + 1 other blocks, whered is the
order of the tree.

The tree is arranged in such a way that a search for an
entry involves starting at the root and following a branch
to its leaf. The entry will be found at one of the blocks
along the path. The search time (in terms of the number
of block reads) is between one andO(logd(n)). It is more
likely to be closer to the upper bound because there are
more entries close to the leaves.

As a comparison, assume a GFS directory with a block
size of 4096 bytes and a directory entry size of 280 bytes.
Directory entry lookup times for a ExHash directory with
up to 469 million entries is three block reads (this in-
cludes one indirect metadata block, one hash block and
one leaf block). A comparable B-Tree directory would
have a height of at least six. The ExHash directory would
be at least twice as fast, on average. Access times for Ex-
Hash consistently beat B-trees for all ranges of directory
sizes.

The number of I/Os necessary to insert an entry into
the directory is also another measure of efficiency. The
common case for both ExHash and B-trees is an addition
to a block with no overflow (i.e., there is enough room in
the block to hold the entry). For an ExHash directory that
takes the same amount of time as a search. B-trees always
add entries to their leaves, so that means when adding a
node the whole height of the tree must be traversed.

The more complicated case occurs when the block that
should receive the entry has no room for it. A ExHash di-
rectory splits the leaf block in two. This involves accesses
to the two leaf blocks and changing some of the pointers
in the hash table. A B-tree overflow involves shifting en-
tries to neighbor and parent blocks and possibly allocating
a new block. The operations for both schemes are roughly
comparable.

The most costly case for ExHash is when leaf block
can’t be split and the hash table needs to be doubled. The
hash table must be read into memory and written back at
twice it’s previous size. (Then the leaf block is split.) As
the hash becomes bigger, this becomes more and more ex-
pensive but fortunately, less and less frequent. The patho-
logical case for B-trees is the successive overflow from
child block to parent block all the way back to the root
block, causing the tree to grow a block in height. There
are also less pathological cases where the restructuring
doesn’t go all the way back to the root, but only part way
up the tree. In these worst-case scenarios, ExHash is prob-
ably a little bit worse than B-Trees, but in most cases it
will be faster.

Space efficiency is another concern. What percentage
of the space used by the directory is actually used to hold
directory entries? B-trees are always guaranteed to be at
least half full. There are variants that are guaranteed to
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be two-thirds full. They also have very little organization
overhead. Every block used in the directory holds direc-
tory entries. The only organizational data stored are the
n + 1 data pointers stored in each block for everyn en-
tries.

There is no limit on what percentage of a directory’s
allocated space is actually used by directory entries. The
space efficiency of the directory is dependent on the qual-
ity of the hash function (see section 4.1.5). ExHash di-
rectories also have blocks that don’t hold directory entries
(i.e., the hash table). This lowers the space efficiency of
the directory somewhat, but the hash table generally takes
up less than one percent of the size of the leaf blocks.

We feel that, on average, Extendible Hashing provides
a better method of directory organization that B-trees. It
is quicker than B-trees but a little bit more space-hungry.
Given the steep increase in available disk space and the
much slower decrease in access times, we feel that this is
the right trade-off.

4.1.5 The Hash Function

The hash function used in this algorithm is important. It
must provide a uniform distribution of the hashed keys.
If the distribution isn’t uniform enough, the directory will
be less space efficient. Lower space efficiency translates
into slower access times due to bigger hash tables, more
indirect blocks between the inode and the hash table data,
and therefore more block reads per lookup.

One important thing to consider is the set of keys
used in the hash. Common hash functions are designed
to work well on words from a dictionary. Keys from
this key space don’t have too much in common with
each other. The keys that GFS’s hash function has to
deal with are much more structured. One good exam-
ple is a numerical time-domain electromagnetics simu-
lation program that dumps out thousands of files named
after the time step that generated them (“timestep.00001”,
“timestep.00002”, “timestep.00003”, and so on). Dates
are another common element in the filenames of files that
exist in large directories. Most common “fold and hash”
functions [20], [22] fall apart for key spaces that overlap
so much.

GFS uses a 32-bit cyclic redundancy check (CRC) for
its hash function. Because CRCs are designed to detect
single-bit errors, they provide a much more uniform dis-
tribution of hashed keys. The small number of bits that
change between two names that differ by one digit pro-
duce a large change in the CRC. Our results show that
CRCs perform significantly better than other hashes for
“filename type” keys and they even do better for “dictio-

nary type” key spaces. As far as the authors know, the
approach of using a CRC as the hash function for for an
extendible hash directory hasn’t been used before.

The GFS directory code was instrumented so that it can
provide measurements of the space efficiency of directo-
ries as they are filled. The measure is defined as:

eff =
Number Of Entries

Number Of Blocks(Entries Per Block)
(1)

The efficiency number indicates the fraction of the space
allocated for the directory that actually contains directory
entries.

As a test, a directory was filled with 45,402 files named
after dictionary words. This was done twice. Once when
GFS was using a conventional hash (from [20]) and once
using a CRC hash. The results can be seen in figure 6.
TheEntriesPerBlockvalue from Equation 1 is about14:6.

The efficiency results for the conventional hash were
good until about the 27,000th entry. At this point, the con-
ventional hash produced too many almost identical hashed
keys. The new entry caused a leaf to overflow. Because
the hashed keys were almost identical, the entries weren’t
split evenly between the two new leaves. In fact, they all
were put into one leaf. This overflowed the leaf again and
caused a second split. This overflowing continued until
there was only one pointer from the hash table to the leaf.
At this point, the overflowing caused the hash table to be
doubled. Then the leaf could be split, but the split resulted
in another overflow, which caused the hash table to double
again, and so on.

In short, the hash table ballooned up to its maximum
size of 16 MB. All the space required by the hash table re-
duced the space efficiency of the directory. In contrast, the
CRC hash provided a more uniform distribution of hash
keys. This increased the efficiency of the CRC hash di-
rectory and made it more consistent. It also prevents the
cascading overflow situation. Directories with millions
of entries have been created using the CRC hash and re-
peated overflow has never been a problem.

When the hash table swells to its maximum size, the
access time for directory lookups is also increased. When
the hash table is large, finding an entry in the hash table
requires indirect block accesses. (Recall that the hash ta-
ble is stored as regular file data.) Also, the overflow of a
leaf with one pointer is handled by making a linked list
from that leaf. So maximally sized hash tables not only
reduces a directories space efficiency, it also reduces its
speed.

The same thing was done with 45,402 “filename type”
names. (We used: file.0000000000, file.0000000001,
file.0000000002, and so on.) The results can be seen in
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Figure 6: The space efficiency of a GFS ExHash directory as 45,402 files with names from the dictionary are created.
The top graph shows the performance of a conventional hash. The bottom graph shows the performance of a CRC
hash. The efficiency measure indicates the fraction of the space allocated for the directory that actually contains
directory entries. (i.e. – An efficiency of one is optimal)
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Figure 7: The space efficiency of a GFS ExHash directory as 45,402 files with names “file.0000000000” through
“file.0000045401” were created. The top graph shows the performance of a conventional hash. The bottom graph
shows the performance of a CRC hash.
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Figure 7. The conventional hash caused the hash table to
double to maximum size within the first 1500 entries. The
efficiency of the CRC hash oscillates more than it did for
the dictionary words, but the hash table remains a reason-
able size.

In summary, the CRC hash function produces much
better results than the conventional hash function. The
CRC hash function is also fast. It is implemented in a few
basic operations (AND, Shift, NOR, etc) and a lookup in a
1 KB lookup table. The time require to compute the CRC
hash is comparable to conventional hashes.

4.2 GFS Consistency

Great care must be taken when metadata is accessed and
updated. If the proper Dlocks aren’t held at the right time,
metadata and data corruption can easily result. Much of
the recent GFS work has focused on making sure that
locks are held in all the right places.

This new locking has also increased the potential for
deadlock. There are many places where the file system
must hold two or more Dlocks to perform an operation.
For example, the lookup operation requires two simulta-
neous locks. The lookup operation takes a directory and
the name of a file in that directory and returns the inode for
that file. Two locks must be acquired for this operation:
one lock must be held while the directory is read and the
file’s inode number is determined. The other lock must be
held while the inode is read. These two locks must be held
at the same time or race conditions exist with other pro-
cesses on the same machine doing lookups on the same
file, and other processes and machines trying to unlink
this file.

There are a few other places where two or more locks
are held and deadlock can occur. Ordering the acquisition
of the Dlocks is difficult because Dlocks are assigned ar-
bitrarily to different parts of the directory structure. An
order that would prevent deadlock for one part of the file
system tree could cause deadlock in other parts.

GFS handles this problem by implementing a system
of back-offs and retries. If a client is holding one Dlock
and wants another, it tries to get the new lock for a certain
amount of time. If it doesn’t get the lock in this time, it
assumes a deadlock condition exists. It releases the first
lock, sleeps for a random amount of time, and then re-
tries the whole operation. This avoids deadlock, but it
isn’t optimal. The new version of the Dlock protocol al-
lows clients to talk to each other directly, so that a separate
fairness and sharing protocol can be applied if necessary.

Another new feature is that processes can now recur-
sively acquire Dlocks. This was implemented by adding a

layer between the file system and the NSP volume driver
that examines each Dlock command before it is issued. If
the Dlock has already been acquired by a process with the
same process ID, a counter is incremented and the com-
mand is passed back up to the file system as if it was is-
sued to the lock device and succeeded. If the lock is held
by another process, the requesting process is put to sleep
until the first process releases the lock. If the Dlock isn’t
currently held, the command is passed down to the pool
device and is issued to the actual Dlock device.

When an unlock command is issued, the counter is
decremented. When it reaches zero, the unlock command
is passed down to pool and issued to the device.

An interesting and useful side effect of this algorithm
is that it prevents multiple simultaneous lock requests to
a lock device from the same machine. If one process has
a Dlock and another process wants the same Dlock, the
second process sleeps on a semaphore waiting for the first
process to finish. This minimizes the amount of traffic on
the network.

This recursive Dlock layer will be very important in the
next generation GFS. In this new version, GFS will hold
Dlocks much longer that it does now. This allows write
caching and minimizes the effects of Dlock latency. Re-
cursive Dlocks allow these locks to be held longer with
minimal changes to the code.

To enable caching, when a Dlock is first acquired, the
“Number of times locked” counter is set to 2 (instead of
the usual 1). From this point forward the code acquires
and releases locks as it normally would. The difference is
that the lock and release command are all internal to the
file system and don’t access the lock device. When the file
system needs to release the lock on the lock device, it calls
the unlock routine one more time. This decrements the
“Number of times locked” counter to zero and the unlock
command is issued to the lock device.

4.3 Using the Buffer Cache

The buffer cache is an important component of modern
UNIX operating systems [23], [2]. To prevent excessive
disk accesses the operating system saves recently used
disk blocks in a section of memory called the “buffer
cache”. Future requests for data already in the buffer
cache can be completed quickly since no disk access is
required. If the requested data is not in the buffer cache, it
is read from disk and then copied into the buffer cache as
well as to the user program. This applies to both metadata
and file blocks.

Unlike IRIX, Linux presently provides no “direct” disk
access to bypass the buffer cache. Large disk reads on
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IRIX can benefit significantly from no buffering because
only one memory copy is performed in the OS rather than
two. Ordinary usage on both platforms, however, is char-
acterized by frequent small file reads. In this case per-
formance is greatly enhanced by using the buffer cache
instead of accessing the disk. Caching metadata blocks
also improves performance for large file requests because
of repeated indirect block references.

Using the buffer cache in GFS is complicated by the
ability of multiple clients to access and cache the same
disk blocks. When a client detects data has changed on
disk (indicated by a new Dlock counter value), it needs
to invalidate those blocks in its buffer cache so the new
data will be re-read. Recent changes in GFS keep track of
cached buffers associated with each Dlock so they can be
invalidated when necessary. This allows use of the buffer
cache for reads, providing data for repeated small file re-
quests and speeding up large file accesses. Without this
ability in the past, all buffers were immediately invali-
dated after a read. Caching of writes is more difficult and
cannot be implemented in GFS until the latest Dlock spec-
ification is in use [12].

Linux uses any spare memory as buffer space and re-
claims this space when memory demands are higher. This
further complicates the issue as GFS must not attempt to
invalidate a buffer which has been reclaimed by the OS.
Inserting a function pointer in the buffer head allows a
GFS routine to remove the link to the departing buffer
head. These changes in the Linux buffer management rou-
tines were possible because the kernel source was avail-
able. IRIX source code would enable similar improve-
ments to GFS IRIX in the future.

With support for buffering in place, block read-ahead
can now be effective. In this approach, a block request
results in the next several blocks also being read at the
same time and stored in the buffer cache. Program local-
ity makes subsequent block reads likely, and pre-fetching
them can improve overall performance.

4.4 Free Space Management

The current implementation of free space management in
GFS is based on the bitmap approach. For every file sys-
tem block in a given resource group there is a single bit
to represent whether the block is free or not. This method
is space efficient but as the file system fills with data, a
search through an increasing number of bits is required in
order to find the necessary free space. This becomes more
costly with respect to performance with every additional
byte we need to check, and even more expensive when it
is necessary to search through individual bits.

The new approach, using an extent-based scheme, can
potentially cost more in terms of space but should provide
better performance. Instead of keeping track of each file
system block in a resource group, we restrict ourselves
to the free blocks. For every group of free file system
blocks in a resource group there will be an extent that
keeps track of the starting block and the number of blocks
in the group, as shown in Figure 8. When the file sys-
tem is created, it has one extent in each resource group.
When files are added only the starting address in the ex-
tent needs to be changed. As files are removed, if the
space freed cannot be added to an existing extent, a new
one must be added. If the file system becomes highly frag-
mented, the amount of space necessary to hold the extents
may become large.

There are two distinct advantages to this method. First,
there is no need to search through a mapping of blocks in
order to find the blocks that are free. Since we already
know the blocks we are tracking are free, our focus is to
find a group of free blocks that is large enough to hold
our entire file. The second advantage of this scheme is
that we can give the block allocator a “goal” block, i.e.,
a block that we would like our new space to follow. This
way we can attempt to group metadata and data together
on disk. While this approach may require more time to
search through the extents to find an extent that starts
closely after the goal block, it has the potential to reduce
disk latencies in the future.

4.5 The Network Storage Pool

The pool driver coalesces a heterogeneous collection of
shared storage into a single logical volume called the Net-
work Storage Pool. The pool driver is built atop the SCSI
and Fibre Channel drivers and is similar to SGI’s xlv and
Linux’s md. It allows striping across multiple devices and
provides a pool of Dlocks for GFS, hiding the implemen-
tation details. Devices may be divided into subpools ac-
cording to specific performance characteristics.

Recent changes to the pool driver adapted it to the mod-
ular Linux block driver interface. The device locking op-
tions in the pool driver have also evolved to support ex-
ponential back-off from failed lock requests, multiple at-
tempts to acquire locks, and giving up on Dlocks. We
are developing a Dlock server daemon that runs over any
IP network. This capability will be helpful in GFS de-
velopment and will help those without Dlock support in
their disk drives. (Note that GFS can be run in single ma-
chine mode with Dlocks disabled, which means that GFS
can function efficiently as just another Linux desktop file
system using any kind of disk.) Other pool driver addi-
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Figure 8: The extent and bitmaps encodings of 32 blocks, including free and in-use blocks.

tions include user-level tools to dynamically update pools
in the kernel, and to dynamically create file systems based
on pool parameters.

Ptool is a user-level tool which configures pool devices
according to a parameter file edited by the user. The
pool name, subpool definitions, subpool devices (individ-
ual disk partitions), striping sizes and scope, and Dlock
devices can be specified in the parameter file. Labels con-
taining all this information are written byptool to the be-
ginning of each disk partition used by the pool.Ptool
needs to be run only once by one client for a pool to be
created and accessible to all clients.

Passembleis the user level program which scans all the
devices accessible to a client to determine what pools exist
and can be used. All the labels on the shared devices (writ-
ten byptool) are read to construct the logical pool defini-
tions. This information is then passed to the kernel which
adds these definitions to its own list of managed pools. An
important early improvement removed specific major and
minor numbers from pool labels as various clients may
identify devices differently. The requirement for a desig-
nated label partition has also been removed. New storage
pools can be written, assembled and added to the kernel
dynamically.Passembleneeds to be run by each client at
bootup and when a new pool has been created. Pool de-
vice files are also created and removed bypassembleas
storage pools are added and destroyed.

4.6 New Dlock Features

The new version of the Dlock protocol has features that
allow GFS to perform better and more reliably. The new
lock protocol is fully defined in [12]. The main additions
are:

� Dlocks Time Out

Each Dlock now has a timer associated with it. If
the lock is left in the locked state for too long, the
lock expires and is unlocked. A client that wishes to
hold a lock for a long time can send “Touch Lock”
commands that reset the timer on the lock.

This new feature fixes one of the bigger performance
problems in GFS. It allows the addition of write
caching. Previously, clients had to discover failed
clients by pinging the lock for some minimum time;
the lock was reset manually if there was no activity.
This meant there was a maximum amount of time
that a lock could be held.

In the new version, when Dlocks time out, the lock
device determines which clients have failed. A client
can hold a lock for a long period of time and be as-
sured that no other client can read or write the data
protected by the lock. This means that the client
doesn’t have to synchronously write back modified
data so that extensive write-caching is now possible.
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� Client Identification Numbers are returned

Each GFS client in the new locking scheme is as-
signed a unique four-byte integer. TheClient ID is
passed to the Dlock device in the SCSI Command
Descriptor Block of the Dlock command.

Dlock commands that fail because the lock is held by
another client return the Client IDs of the machines
that are currently holding the lock. This allows out-
of-band communication between clients while still
keeping GFS Dlock-centric.

This also helps clients hold locks for longer amounts
of time. If a client wants a lock that is held by another
client, it can use the returned Client ID to send a non-
SCSI message to the client holding the lock. This
message can either ask for the lock to be released
or, perhaps, ask for authorization to do a third-party-
transfer to or from the disk.

� Reader/Writer Locks

Many pieces of data, especially metadata, are read
often but written infrequently. This type of access
pattern lends itself well to reader/writer locks. Read-
ers acquire one of a multitude of reader locks. Writ-
ers acquire a writer lock that precludes both readers
and other writers. Each Dlock in the new protocol is
a reader/writer lock. This should help scalability in
high traffic areas like the root directory.

5 Performance Results

Figures 9 through 11 represent the current single client I/O
bandwidth of Linux GFS. The tests were performed on a
533 MHz Alpha with 512 MB of RAM running Linux
2.2.0-pre7. The machine was connected to eight Seagate
ST19171FC Fibre Channel drives on a loop with a Qlogic
QLA2100 host adapter card. GFS, at the time of this writ-
ing, has read caching implemented. Read Ahead and write
caching have not yet been implement. A 4,096-byte block
size was used for these tests. (A block size of 8,192 bytes
yields numbers that about 10 percent better, but this larger
block size isn’t available on all Linux architectures.)

The bandwidth of first time creates, shown in Figure
9, peaks at around 17.5 MB/s. For small request sizes,
GFS performance leaves something to be desired at only
about 1.3 MB/s. This will be greatly improved when write
caching is implemented. Write caching will allow the
small requests to be built up into bigger ones, and conse-
quently improves performance. Right now, Dlocks are ac-
quired and released for every request. The write caching

implementation requires that Dlocks be held for long pe-
riods of time. Without the overhead of acquiring locks,
small I/O request bandwidth should noticeably improve.

Figure 10 shows the bandwidth for preallocated writes
on the same system. For preallocated writes, the metadata
(and location of the data blocks) is quickly cached up and
data is written out as fast as possible. Not having to al-
locate blocks increases the file system speed by about 25
percent. In the last IRIX release, preallocated writes were
about twice as fast as creates [24]. The fact there there is
such a small difference between creates and preallocated
writes is a tribute to Linux GFS’s new block allocation
routines and read caching.

The read bandwidth shown in Figure 11 peaks at about
38 MB/s. This is faster than the buffered I/O of IRIX GFS
(which peaked about 23 MB/s). The most noted improve-
ment over IRIX GFS is in the small I/O request sizes. The
bandwidth for small request sizes in IRIX GFS was about
one to two megabytes per second. (The same was true for
Linux GFS before read caching was implemented.) With
read caching, small request I/O for Linux GFS is about
12 MB/s. We expect this numbers to improve even more
when read ahead and the improved Dlock acquisition rou-
tines are implemented.

All these numbers show that Linux GFS buffered I/O
is significantly better than IRIX GFS buffered I/O. How-
ever, IRIX GFS direct I/O offers a significant speedup.
Peak bandwidth for large I/Os are 35 MB/s for creates
and 55 MB/s for reads. (Direct I/O doesn’t offer much
of a speedup for small I/Os under the old IRIX GFS.) As
stated in section 3.1.2, Linux does not yet have Direct I/O.
Bandwidth for both reads and writes will increase when
this hurdle is overcome.

6 Future Work

GFS has come a long way in the last three years, but it has
a long way to go. Current and future work is described in
the following sections.

6.1 Error Recovery

Error recovery is particularly important in a shared-disk
file system. All the clients are directly manipulating the
metadata, so the failure of any client could leave metadata
in a inconsistent state. Furthermore, since there are so
many machines accessing the disks, it is impractical for all
of them to unmount and wait for a file system check (fsck)
to complete every time a client dies. It is important that
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the inconsistencies caused by a failed client are localized
and easily repairable while the file system is online.

We are currently investigating a number of methods
of recovery that will allow quick consistency checking.
Snapshots, journaling, and logging are among them. The
final version of the paper will describe a scalable metadata
logging scheme for GFS.

6.2 OS pool sharing

The port of GFS to Linux has raised the obvious issue of
sharing a file system among both IRIX and Linux clients.
(as well as future platforms for GFS). There are no file
system or pool driver barriers to doing this. Currently, to
support both Alpha and x86 Linux clients, byte ordering
and structure packing routines have been added to the file
system and pool driver. The lack of a common disk parti-
tion format is the last problem to be solved before a GFS
file system may be shared among differing operating sys-
tems.

For dedicated storage arrays, the easiest solution is just
to have no partition format at all. When dealing with a
storage pool made up of hundreds of disks, there is no
point to dividing the disks into pieces. Grouping the disks
in different ways provides the configure-ability that sys-
tem architects require.

There are some situations, particularly involving SCSI
over IP, where a cross-platform partition format would
be useful. The Microsoft partition format is very com-

mon and would be a good choice if it wasn’t so limited.
Clearly, some other standard needs to be agreed on.

If GFS succeeds on Linux, it could provide a reference
implementation for other programmers writing shared de-
vice file systems. If other operating systems use the GFS
protocols and metadata for their shared device file system
implementations, then interoperability can be achieved
and incompatible shared file system formats avoided.

6.3 Growing File Systems

As devices are added to the storage network, the file sys-
tem should be able to dynamically grow and use the new
space. Enlarging the pool on which the file system re-
sides is the first step. This is accomplished by making the
new space an additional subpool. (Striping is confined to
a subpool.) Passing the new data to the kernel and adding
the subpool to the in-core structures is a simple process.
The complexity arises in expandingptool andpassemble
to dynamically change the pool defining labels and cor-
rectly assemble the pool definitions from new, in-use and
unused devices belonging to multiple pools. At the file
system level, a program needs to update the superblock
and resource indexes on disk and prompt the file system
on each client to reread this data so the new space will be
used. We are working on making the changes to allow the
file system to grow like this.
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6.4 A GFS BSD Port

GFS is targeted at heterogeneous clusters of workstations.
This commitment will continue with GFS ports to BSD
UNIX.

6.5 SCSI over IP

By writing code that lets SCSI commands and data flow
over IP networks, the notion of a storage area network is
greatly expanded [25]. A shared device file system like
GFS can access data that is spread over a much wider
spectrum of hardware. Instead of network attached stor-
age being limited to dedicated (and expensive) disks ar-
rays, a computer can export its local disks to the IP net-
work and essentially become a network attached storage
device.

Since any machine can become a network attached stor-
age device, upgrades to more conventional SAN hardware
doesn’t need to be as quick. A GFS installation can be cre-
ated with commodity Ethernet hardware. As the demand
for I/O bandwidth increases, Fibre Channel hardware can
be added to create a Storage Area InterNetwork (See Fig-
ure 12). GFS accesses data with equal ease from the Eth-
ernet or Fibre Channel networks, but the new hardware
will be faster.

The key to SCSI over IP is two pieces of software, the
client and the server. A server daemon waits for IP con-
nections. When a connection is made, the daemon re-
ceives SCSI commands that are transmitted to it over the
network. It then repackages those commands and sends
them out across its local SCSI bus to a local disk. (It
could also send them to a Fibre Channel disk it might be
attached to.) It takes the response from that disk, packages
it up, and sends it back out over IP.

The client presents an interface to the operating system
that looks like a standard SCSI disk. When it gets a re-
quest from a higher level, it packages the command up
and sends it across the network to the appropriate server
machine. It then passes the response that comes back from
the server up to the higher level.

The technology to package up parallel SCSI commands
and send them over a serial line or network is already part
of SCSI-3 [26]. All that is required is implementing the
drivers. This should be straight forward. Van Meter has
implemented just such a scheme and shown that it can
achieve parallel SCSI speeds over fast Ethernet [25].

The server side can also be used to emulate SCSI com-
mands. The server would look to see what type of SCSI
command was being transfered. If it was is special com-
mand, the server daemon could handle it by itself and send

a reply back to the client without ever talking to the disk.
Other commands could be passed through to the disk.

The Dlock command could be implemented this way.
The command is currently in the process of being stan-
dardized, but until it becomes wide spread in SCSI de-
vices, the server daemon could emulate it.
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